Skip to main content

Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radiotherapy Dose Simulation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

The Gamma index Passing Rate (GPR) is considered the preferred metric to evaluate dose distributions in order to deliver safe radiotherapy treatments. For this reason, in the context of accelerating Monte-Carlo dose simulations using deep neural networks, the GPR remains the default clinical metric used to validate the predictions of the models. However, the optimization criterion that is used for training these neural networks is based on loss functions that are different than GPR. To address this important issue, in this work we introduce a new class of GPR-based loss functions for deep learning. These functions allow us to successfully train neural networks that can directly yield the best dose predictions from a clinical standpoint. Our approach overcomes the mathematical non-differentiability of the GPR, thus allowing a successful application of gradient descent. Moreover, it brings the GPR computation time down to milliseconds, therefore enabling fast trainings. We demonstrate that models trained with our GPR-based loss functions outperform models trained with other commonly used loss functions with respect to several metrics and display a 15% improvement of the GPR over the test data. Code is available at https://rb.gy/vf5jwv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahnesjö, A.: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys. 16(4), 577–592 (1989)

    Article  Google Scholar 

  2. Biggs, S., et al.: Pymedphys: a community effort to develop an open, python-based standard library for medical physics applications. J. Open Source Softw. 7(78), 4555 (2022)

    Article  Google Scholar 

  3. Chen, M., Lu, W., Chen, Q., Ruchala, K., Olivera, G.: Efficient gamma index calculation using fast Euclidean distance transform. Phys. Med. Biol. 54(7), 2037 (2009)

    Article  Google Scholar 

  4. Deng, Y., et al.: Comparison of pencil beam and Monte Carlo calculations with ion chamber array measurements for patient-specific quality assurance. Radiat. Med. Prot. 3(3), 115–122 (2022)

    Article  Google Scholar 

  5. Gu, X., Jia, X., Jiang, S.B.: GPU-based fast gamma index calculation. Phys. Med. Biol. 56(5), 1431 (2011)

    Article  Google Scholar 

  6. Lee, B.I., Boss, M., LaRue, S.M., Martin, T.W., Leary, D.: Comparative study of the collapsed cone convolution and monte carlo algorithms for radiation therapy planning of canine sinonasal tumors reveals significant dosimetric differences. Veterinary Radiol. Ultrasound Official J. Am. Coll. Veterinary Radiol. Int. Veterinary Radiol. Assoc. 63 (2021)

    Google Scholar 

  7. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  8. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  10. Martinot, S., Bus, N., Vakalopoulou, M., Robert, C., Deutsch, E., Paragios, N.: High-particle simulation of monte-carlo dose distribution with 3D convlstms. In: MICCAI, pp. 499–508 (2021)

    Google Scholar 

  11. Mohan, R., Chui, C., Lidofsky, L.: Differential pencil beam dose computation model for photons. Med. Phys. 13(1), 64–73 (1986)

    Article  Google Scholar 

  12. Neph, R., Lyu, Q., Huang, Y., Yang, Y.M., Sheng, K.: Deepmc: a deep learning method for efficient monte carlo beamlet dose calculation by predictive denoising in magnetic resonance-guided radiotherapy. Phys. Med. Biol. 66(3), 035022 (2021)

    Article  Google Scholar 

  13. Quan, E., et al.: A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 83, 1169–78 (2012)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)

    Google Scholar 

  15. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248 (2017)

    Google Scholar 

  16. Vasudevan, V., Huang, C., Simiele, E., Yu, L., Xing, L., Schuler, E.: Combining monte carlo with deep learning: Predicting high-resolution, low-noise dose distributions using a generative adversarial network for fast and precise monte carlo simulations. Int. J. Radiat. Oncol. Biol. Phys. 108(3), S44–S45 (2020)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  18. Wendling, M., et al.: A fast algorithm for gamma evaluation in 3D. Med. Phys. 34(5), 1647–1654 (2007)

    Article  Google Scholar 

  19. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Martinot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinot, S. et al. (2023). Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radiotherapy Dose Simulation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics