Skip to main content

Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

4D-flow magnetic resonance imaging (MRI) provides non-invasive blood flow reconstructions in the heart. However, low spatio-temporal resolution and significant noise artefacts hamper the accuracy of derived haemodynamic quantities. We propose a physics-informed super-resolution approach to address these shortcomings and uncover hidden solution fields. We demonstrate the feasibility of the model through two synthetic studies generated using computational fluid dynamics. The Navier-Stokes equations and no-slip boundary condition on the endocardium are weakly enforced, regularising model predictions to accommodate network training without high-resolution labels. We show robustness to each type of data degradation, achieving normalised velocity RMSE values of under 16% at extreme spatial and temporal upsampling rates of 16\(\times \) and 10\(\times \) respectively, using a signal-to-noise ratio of 7.

Erica Dall’Armellina and Alejandro F Frangi: Joint senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., G.S, Corrado.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. In: 12th USENIX Symposium on OSDI (2016)

    Google Scholar 

  2. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. Comput. Sci. Discov. 8 (2015)

    Google Scholar 

  3. Fathi, M.F., et al.: Super-resolution and denoising of 4D-flow MRI using physics-informed deep neural nets. Compu.t Methods Programs Biomed. 197, 105729 (2020)

    Article  Google Scholar 

  4. Ferdian, E., et al.: 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front. Phys. 8(183) (2020)

    Google Scholar 

  5. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 426, 109951 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. 3rd ICLR (2015)

    Google Scholar 

  7. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., Wieben, O.: 4D flow MRI. J. Magn. Reson. Imaging 36(5), 1015–1036 (2012)

    Article  Google Scholar 

  9. Pelc, N.J., Bernstein, M.A., Shimakawa, A., Glover, G.H.: Encoding strategies for three-direction phase-contrast MR imaging of flow. J. Magn. Reson. Imaging 1, 405–413 (1991)

    Article  Google Scholar 

  10. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shit, S., Zimmermann, J.: SRflow: Deep learning based super-resolution of 4D-flow MRI data. Front. Artif. Intell. (2022)

    Google Scholar 

  12. Sitzmann, V., Martel, J.N.P., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: 34th Conference on NeurIPS (2020)

    Google Scholar 

  13. Xia, Y., et al.: Automatic 3D+t four-chamber CMR quantification of the UK biobank: integrating imaging and non-imaging data priors at scale. Med. Image Anal. 80, 102498 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EPSRC Centre for Doctoral Training in Fluid Dynamics (EP/L01615X/1) and the Royal Academy of Engineering Chair in Emerging Technologies (CiET1919/19). The computational work was undertaken on the UK National Tier-2 high performance computing service JADE-2 (EP/T022205/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergus Shone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shone, F. et al. (2023). Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics