Skip to main content

Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

A comparative study of large-scale species-shared and -specific functional connectomes, that are respectively inherited or diverged from their common ancestor, is important to the understanding of emergence and evolution of brain functions, cognitions and behaviors. However, recent works largely relied on the scheme that one species is used as the “reference” to which another is aligned and contrasted, whereas a more reasonable “reference” could be related to their common ancestor and unknown. To this end, we proposed a novel method termed shared-unique variational autoencoder (SU-VAE), and applied it to macaque and human MRI datasets to disentangle species-specific variation of functional connectomes from species-shared one. The reconstructed shared and specific connectomes gain supports from reports. The proposed method was further validated by the results that human-specific latent features, in contrast to shared features, better capture the variation of behavior variables unique to human, such as language comprehension. Our studies outperform other methods developed on VAE and linear regression in the aforementioned validation study. Finally, a graph analysis on the identified shared and specific connectomes reveals that, human/macaque -specific connecomtes positively/negatively contribute to the enhancement of network efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/PRIME/uwmadison.html.

  2. 2.

    http://rfmri.org/content/dparsf.

  3. 3.

    https://mcin.ca/technology/civet.

  4. 4.

    https://www.freesurfer.net.

  5. 5.

    http://www.fmrib.ox.ac.uk/fsl.

  6. 6.

    https://www.humanconnectome.org/software/connectome-workbench.

  7. 7.

    http://cocomac.g-node.org.

References

  1. Kay, R.F., Ross, C., Williams, B.A.: Anthropoid origins. Science 275(5301), 797–804 (1997)

    Article  Google Scholar 

  2. Mars, R.B., Jbabdi, S., et al.: Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31(11), 4087–4100 (2011)

    Article  Google Scholar 

  3. Smaers, J.B., Steele, J., Case, C.R., Cowper, A., Amunts, K., Zilles, K.: Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav. Evol. 77(2), 67–78 (2011)

    Article  Google Scholar 

  4. Axer, M., Amunts, K.: Scale matters: the nested human connectome. Science 378(6619), 500–504 (2022)

    Article  Google Scholar 

  5. de Schotten, M.T., Croxson, P.L., Mars, R.B.: Large-scale comparative neuroimaging: where are we and what do we need?. Cortex, 118, 188–202 (2019)

    Google Scholar 

  6. Raghanti, M.A., Stimpson, C.D., Marcinkiewicz, J.L., Erwin, J.M., Hof, P.R., Sherwood, C.C.: Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Neuroscience 155(1), 203–220 (2008)

    Article  Google Scholar 

  7. Aglinskas, A., Hartshorne, J.K., Anzellotti, S.: Contrastive machine learning reveals the structure of neuroanatomical variation within autism. Science 376(6597), 1070–1074 (2022)

    Article  Google Scholar 

  8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  9. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  11. Liu, X., et al.: Learning disentangled representations in the imaging domain. Med. Image Anal. 80, 102516 (2022)

    Article  Google Scholar 

  12. Zhang, T., et al.: Species-shared and -specific structural connections revealed by dirty multi-task regression. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 94–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_10

    Chapter  Google Scholar 

  13. Mars, R.B., et al.: Whole brain comparative anatomy using connectivity blueprints. Elife 7, e35237 (2018)

    Article  Google Scholar 

  14. Thiebaut de Schotten, M., Forkel, S.J.: The emergent properties of the connected brain (2022). https://doi.org/10.1126/science.abq2591

  15. Yeo, B.T.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2010)

    Article  Google Scholar 

  16. Rilling, J.K., et al.: The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11(4), 426–428 (2008)

    Article  Google Scholar 

  17. de Schotten, M.T., et al.: Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48(1), 82–96 (2012)

    Article  Google Scholar 

  18. Hanakawa, T., Honda, M., Sawamoto, N., et al.: The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. Cereb. Cortex 12(11), 1157–1170 (2002)

    Article  Google Scholar 

  19. Silk, T., Vance, A., Rinehart, N., et al.: Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: functional magnetic resonance imaging study. Br. J. Psychiatry 187(3), 282–283 (2005)

    Article  Google Scholar 

  20. Dumontheil, I., Burgess, P.W., et al.: Development of rostral prefrontal cortex and cognitive and behavioural disorders. Dev. Med. Child Neurol. 50(3), 168–181 (2008)

    Article  Google Scholar 

  21. Herbet, G., Moritz-Gasser, S., Duffau, H.: Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct. Funct. 222(4), 1597–1610 (2017)

    Article  Google Scholar 

  22. Catani, M., Jones, D.K., Donato, R., et al.: Occipito-temporal connections in the human brain. Brain 126(9), 2093–2107 (2003)

    Article  Google Scholar 

  23. Bashwiner, D.M., Wertz, C.J., Flores, R.A., et al.: Musical creativity “revealed’’ in brain structure: interplay between motor, default mode and limbic networks. Sci. Rep. 6(1), 1–8 (2016)

    Article  Google Scholar 

  24. Carmichael, S.T., Price, J.L.: Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363(4), 642–664 (1995)

    Article  Google Scholar 

  25. Vanduffel, W., et al.: Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4), 565–577 (2001)

    Article  Google Scholar 

  26. Shipp, S., Blanton, M., Zeki, S.: A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur. J. Neurosci. 10(10), 3171–3193 (1998)

    Article  Google Scholar 

  27. Pascalis, O., Bachevalier, J.: Face recognition in primates: a cross-species study. Behav. Proc. 43, 87–96 (1998)

    Article  Google Scholar 

  28. Miller, E.K., Erickson, C.A., et al.: Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996)

    Article  Google Scholar 

  29. Cassar, A.: Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econom. Behav. 58(2), 209–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31971288, U1801265, 61936007, U20B2065, 61976045, 62276050, and 61976045), National Key R &D Program of China (2020AAA0105701), Sichuan Science and Technology Program (2021YJ0247), Innovation and Technology Commission- Innovation and Technology Fund ITS/100/20, Doctor Dissertation of Northwestern Polytechnical University CX2022053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L. et al. (2023). Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics