Skip to main content

Forecasting of Wind Turbine Synthetic Signals Based on Nonlinear Autoregressive Networks

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2023)

Abstract

The importance and future prospects of offshore wind power generation invite great efforts and investments to make it an efficient technology. A crucial aspect is the development of efficient control strategies, which in many cases require models to identify time accurately the state of the turbine at a given. These models must be simple enough not to increase the computational complexity of the control algorithm while being able to capture the nonlinearity and coupling of the wind devices. In this work, we exploit the possibility of using neural networks to identify a wind turbine control-oriented model to predict its power output. Two nonlinear autoregressive with exogenous inputs models, with different input variables, have been proposed, based on feedforward neural networks. Results are satisfactory in terms of model accuracy of an offshore 5MW WT even ruling out relevant variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Council, G.W.E.: Global Wind Report 2022. GWEC, Brussels (2022)

    Google Scholar 

  2. Hu, R., Conghuan, L., Ding, H., Zhang, P.: Implementation and evaluation of control strategies based on an open controller for a 10 MW floating wind turbine. Renew. Energy 179, 1751–1766 (2021)

    Article  Google Scholar 

  3. Wright, A.D., Fingersh, L.J.: Advanced control design for wind turbines Part I: control design, implementation, and initial tests. NREL, Golden (2008)

    Google Scholar 

  4. Wakui, T., Nagamura, A., Yokoyama, R.: Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances. Renew. Energy 173, 105–127 (2021)

    Article  Google Scholar 

  5. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. NREL (2009)

    Google Scholar 

  6. Branlard, E., Jonkman, J., Dana, S., Doubrawa, P.: A digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines. In: Journal of Physics: Conference Series, vol. 1618 (2020)

    Google Scholar 

  7. Wang, L., Zhang, Z., Long, H., Xu, J., Liu, R.: Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Industr. Inf. 13(3), 1360–1368 (2017)

    Article  Google Scholar 

  8. Sun, H., Qiu, C., Lu, L., Gao, X., Chen, J., Yang, H.: Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Appl. Energy 280, 115880 (2020)

    Article  Google Scholar 

  9. Zhang, J., Yan, J., Infield, D., Liu, Y., Lien, F.-S.: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Appl. Energy 241, 229–244 (2019)

    Article  Google Scholar 

  10. Sierra-García, J.E., Santos, M.: Improving wind turbine pitch control by effective wind neuro-estimators. IEEE Access 9, 10413–10425 (2021)

    Article  Google Scholar 

  11. Sierra-Garcia, J.E., Santos, M.: Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control. Neural Comput. Appl. 34(13), 1–15 (2021). https://doi.org/10.1007/s00521-021-06323-w

    Article  Google Scholar 

  12. Blanco Fernández, C., Sierra García, J.E., Santos, M.: Control de un laboratorio de control de temperatura mediante redes neuronales recurrentes. XLIII Jornadas de Automática 193–200 (2022)

    Google Scholar 

  13. Sierra-García, J.E., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Rev. Iberoamericana de Automática e Informática Ind. 18(4), 327–335 (2021)

    Article  Google Scholar 

  14. Alonso, A., Zabaljauregi, A., Larrea, M., Irigoyen, E., Sanchís, J.: Studying the use of ANN to estimate state-space variables for MIMO systems in a NMPC strategy. In: 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol. 531, pp. 464–473 (2022). https://doi.org/10.1007/978-3-031-18050-7_45

  15. Jonkman, J., Musial, W.: Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment. NREL, Golden (2010)

    Google Scholar 

  16. https://github.com/OpenFAST/openfast. National Renewable Energy Laboratory, https://github.com/OpenFAST/openfast. Accessed 1 Sept 2022

  17. Abadi, M., et al.: Tensorflow: a system for large scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  18. Habibi, M.R., Hamid, B., Dragicevic, T.: Detection of false data injection cyber-attacks in DC microgrids based on recurrent neural networks. IEEE J. Emerg. Sel. Top. Power Electron. 9, 5294–5310 (2010)

    Article  Google Scholar 

  19. Sierra-García, J., Santos, M.: Switched learning adaptive neuro-control strategy. Neurocomputing 452, 450–464 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Spanish Ministry of Science, Innovation and Universities under MCI/AEI/FEDER Project no. PID2021-123543OB-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanco, C., Sierra-García, J.E., Santos, M. (2023). Forecasting of Wind Turbine Synthetic Signals Based on Nonlinear Autoregressive Networks. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 676. Springer, Cham. https://doi.org/10.1007/978-3-031-34107-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34107-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34106-9

  • Online ISBN: 978-3-031-34107-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics