Skip to main content

Towards Historical Map Analysis Using Deep Learning Techniques

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 675))

  • 1163 Accesses

Abstract

This paper presents methods for automatic analysis of historical cadastral maps. The methods are developed as a part of a complex system for map digitisation, analysis and processing. Our goal is to detect important features in individual map sheets to allow their further processing and connecting the sheets into one seamless map that can be better presented online. We concentrate on detection of the map frame, which defines the important segment of the map sheet. Other crucial features are so-called inches that define the measuring scale of the map. We also detect the actual map area.

We assume that standard computer vision methods can improve results of deep learning methods. Therefore, we propose novel segmentation approaches that combine standard computer vision techniques with neural nets (NNs). For all the above-mentioned tasks, we evaluate and compare our so-called “Combined methods” with state-of-the-art methods based solely on neural networks. We have shown that combining the standard computer vision techniques with NNs can outperform the state-of-the-art approaches in the scenario when only little training data is available.

We have also created a novel annotated dataset that is used for network training and evaluation. This corpus is freely available for research purposes which represents another contribution of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://corpora.kiv.zcu.cz/map_border/.

References

  1. Aurelie, L., Jean, C.: Segmentation of historical maps without annotated data. In: The 6th International Workshop on Historical Document Imaging and Processing, pp. 19–24 (2021)

    Google Scholar 

  2. Baloun, J., Král, P., Lenc, L., Rocha, A., Steels, L., van den Herik, H.: ChronSeg: novel dataset for segmentation of handwritten historical chronicles. In: ICAART (2), pp. 314–322 (2021)

    Google Scholar 

  3. Chazalon, J., et al.: ICDAR 2021 competition on historical map segmentation. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 693–707. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_46

    Chapter  Google Scholar 

  4. Chen, Y., Carlinet, E., Chazalon, J., Mallet, C., Duménieu, B., Perret, J.: Combining deep learning and mathematical morphology for historical map segmentation. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 79–92. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_5

    Chapter  Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. Kestur, R., Farooq, S., Abdal, R., Mehraj, E., Narasipura, O.S., Mudigere, M.: UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 12(1), 016020 (2018)

    Article  Google Scholar 

  7. Lenc, L., Prantl, M., Martínek, J., Král, P.: Border detection for seamless connection of historical cadastral maps. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 43–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86198-8_4

    Chapter  Google Scholar 

  8. Martínek, J., Lenc, L., Král, P.: Building an efficient OCR system for historical documents with little training data. Neural Comput. Appl. 32, 17209–17227 (2020)

    Article  Google Scholar 

  9. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. CoRR abs/2104.01538 (2021). https://arxiv.org/abs/2104.01538

  10. Neyns, R., Canters, F.: Mapping of urban vegetation with high-resolution remote sensing: A review. Remote Sens. 14(4), 1031 (2022)

    Article  Google Scholar 

  11. Nina, O., Morse, B., Barrett, W.: A recursive OTSU thresholding method for scanned document binarization. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 307–314. IEEE (2011)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A.: Digitized maps of the Habsburg Empire - the map sheets of the second military survey and their georeferenced version, January 2006. https://doi.org/10.13140/2.1.1423.7127

  14. Timilsina, S., Sharma, S., Aryal, J.: Mapping urban trees within cadastral parcels using an object-based convolutional neural network. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 111–117 (2019)

    Article  Google Scholar 

  15. Wick, C., Puppe, F.: Fully convolutional neural networks for page segmentation of historical document images. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 287–292. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This work has been partly supported by Grant No. SGS-2022-016 Advanced methods of data processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Lenc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenc, L., Baloun, J., Martínek, J., Král, P. (2023). Towards Historical Map Analysis Using Deep Learning Techniques. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34111-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34110-6

  • Online ISBN: 978-3-031-34111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics