Abstract
This paper presents Deep Networks for Improved Segmentation Edges (DeNISE), a novel data enhancement technique using edge detection and segmentation models to improve the boundary quality of segmentation masks. DeNISE utilizes the inherent differences in two sequential deep neural architectures to improve the accuracy of the predicted segmentation edge. DeNISE applies to all types of neural networks and is not trained end-to-end, allowing rapid experiments to discover which models complement each other. We test and apply DeNISE for building segmentation in aerial images. Aerial images are known for difficult conditions as they have a low resolution with optical noise, such as reflections, shadows, and visual obstructions. Overall the paper demonstrates the potential for DeNISE. Using the technique, we improve the baseline results with a building IoU of 78.9%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Cheng, B., Girshick, R., Dollar, P., Berg, A.C., Kirillov, A.: Boundary IoU: improving Object-Centric Image Segmentation Evaluation (2021). https://bowenc0221.github.io/boundary-iou
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations (ICLR), pp. 1–21 (10 2021). https://doi.org/10.48550/arxiv.2010.11929, https://arxiv.org/abs/2010.11929v2
Ghandorh, H., Boulila, W., Masood, S., Koubaa, A., Ahmed, F., Ahmad, J.: Semantic segmentation and edge detection—approach to road detection in very high resolution satellite images. Remote Sens. 14(3), 613 (2022). https://doi.org/10.3390/RS14030613
Grecea, C., Bălă, A., Herban, S.: Cadastral requirements for urban administration, key component for an efficient town planning. J. Environ. Prot. Ecol. 14, 363–371 (2013)
He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bi-Directional Cascade Network for Perceptual Edge Detection (2019). https://www.pkuvmc.com/dataset.html
Huan, L., Xue, N., Zheng, X., He, W., Gong, J., Xia, G.S.: Unmixing convolutional features for crisp edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3084197
Lee, K., Kim, J.H., Lee, H., Park, J., Choi, J.P., Hwang, J.Y.: Boundary-oriented binary building segmentation model with two scheme learning for aerial images. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2022). https://doi.org/10.1109/TGRS.2021.3089623
Li, F., et al.: Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation (6 2022). https://doi.org/10.48550/arxiv.2206.02777, https://arxiv.org/abs/2206.02777v1
Liu, Z., et al.: Swin Transformer V2: Scaling Up Capacity and Resolution (2022). https://github.com/microsoft/Swin-
Pan, Z., Xu, J., Guo, Y., Hu, Y., Wang, G.: Deep learning segmentation and classification for urban village using a worldview satellite image based on U-Net. Remote Sens. 12(10), 1574 (2020). https://doi.org/10.3390/RS12101574
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlosser, A.D., Szabó, G., Bertalan, L., Varga, Z., Enyedi, P., Szabó, S.: Building extraction using orthophotos and dense point cloud derived from visual band aerial imagery based on machine learning and segmentation. Remote Sens. 12(15), 2397 (2020). https://doi.org/10.3390/RS12152397
Tao, A., Sapra, K., Catanzaro, B.: Hierarchical Multi-Scale Attention for Semantic Segmentation. CoRR abs/2005.10821 (2020), https://arxiv.org/abs/2005.10821
The Norwegian Mapping Authority: The Norwegian Mapping Authority (9 2022)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2021). https://doi.org/10.1109/TPAMI.2020.2983686
Xie, S., Tu, Z.: Holistically-Nested Edge Detection (2015)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018). https://doi.org/10.1109/LGRS.2018.2802944
Zhao, X., et al.: Use of unmanned aerial vehicle imagery and deep learning UNet to extract rice lodging. Sensors 19(18), 3859 (2019). https://doi.org/10.3390/S19183859
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Jyhne, S., Jacobsen, J.Å., Goodwin, M., Andersen, PA. (2023). DeNISE: Deep Networks for Improved Segmentation Edges. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-34111-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34110-6
Online ISBN: 978-3-031-34111-3
eBook Packages: Computer ScienceComputer Science (R0)