Skip to main content

Realtime Multi-factor Dynamic Thermal Comfort Estimation for Indoor Environments

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops (AIAI 2023)

Abstract

Thermal comfort models are mathematical representations that simulate the thermal environment and predict human comfort based on various factors such as air temperature, air velocity, relative humidity, and radiation heat transfer. These models are used to design and evaluate heating, ventilation, and air conditioning systems, buildings, and outdoor spaces. The main issue when exploiting predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) and model for thermal comfort estimation is how to estimate clothing insulation and metabolic rate as accurately as possible. In this paper, a novel approach for calculating thermal comfort is presented that combines algorithms to enhance the precision of existing approaches. Experimental results showcase the suggested method is more accurate than other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sansaniwal, S.K., Mathur, J., Mathur, S.: Review of practices for human thermal comfort in buildings: present and future perspectives. Int. J. Ambient Energy 43(1), 2097–2123 (2022)

    Google Scholar 

  2. ISO, ISO7730: 7730: Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management 3(605), e615 (2005)

    Google Scholar 

  3. OpenAI: Thermal Comfort Models. OpenAI (2023). openai.com/thermal-comfort-models/

    Google Scholar 

  4. Lourenço Niza, I., Broday, E.E.: Development of thermal comfort models over the past years: a systematic literature review. Int. J. Ambient Energy 43(1), 8830–8846 (2022)

    Google Scholar 

  5. ANSI and ASHRAE, Thermal Environmental Conditions for Human Occupancy. Atlanta (2020)

    Google Scholar 

  6. Tartarini, F., Schiavon, S.: Pythermalcomfort: a Python package for thermal comfort research. SoftwareX 12, 100578. Elsevier BV (2020). Crossref, https://doi.org/10.1016/j.softx.2020.100578

  7. Dimara, A., Timplalexis, C., Krinidis, S., Tzovaras, D.: A dynamic convergence algorithm for thermal comfort modelling. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds.) ICVS 2019. LNCS, vol. 11754, pp. 680–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34995-0_62

    Chapter  Google Scholar 

  8. Harputlugil, T., de Wilde, P.: The interaction between humans and buildings for energy efficiency: a critical review. Energy Res. Soc. Sci. 71, 101828 (2021)

    Google Scholar 

  9. Dimara, A., Krinidis, S., Tzovaras, D.: Comfit: a novel indoor comfort inference tool, 165–170 (2021)

    Google Scholar 

  10. Krinidis, S., et al.: Multi-criteria HVAC control optimization. In: 2018 IEEE International Energy Conference (ENERGYCON). IEEE (2018)

    Google Scholar 

  11. Peeters, L., et al.: Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Appl. Energy 86)(5), 772–780 (2009)

    Google Scholar 

  12. Dimara, A., et al.: NRG4-U: a novel home energy management system for a unique loadprofile. Energy Sources Part A: Recov. Utilization Environ. Effects 44(1), 353–378 (2022)

    Google Scholar 

  13. Oğulata, R.T.: The effect of thermal insulation of clothing on human thermal comfort. Fibres Textiles Eastern Europe 15(2), 67–72 (2007)

    Google Scholar 

  14. Havenith, G., Holmér, I., Parsons, K.: Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build. 34(6), 581–591 (2002)

    Article  Google Scholar 

  15. Luo, M., et al.: Human metabolic rate and thermal comfort in buildings: the problem and challenge. Build. Environ. 131, 44–52 (2018)

    Google Scholar 

  16. Dimara, A., et al.: Optimal comfort conditions in residential houses. In: 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE (2020)

    Google Scholar 

  17. Arendt, K.: Influence of external walls’ thermal capacitance on indoor thermal comfort (2013)

    Google Scholar 

  18. Schiavon, S., Lee, K.H.: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build. Environ. 59, 250–260 (2013). https://doi.org/10.1016/j.buildenv.2012.08.024

  19. ITI Smart Home CERTH.ITI. https://smarthome.iti.gr/

  20. Tuya ZigBee Temperature and Humidity Sensor. https://www.expert4house.com/en/smart-home/sensors-and-detectors/tuya-zigbee-temperature-and-humidity-sensor

  21. Kwon, J.Y., Choi, J.: Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions. J. Physiol. Anthropol. 32(1) (2013). https://doi.org/10.1186/1880-6805-32-11

Download references

Acknowledgements

This work is partially supported by the PRECEPT project funded by the EU H2020 under Grant Agreement No. 958284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Dimara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzitziou, G. et al. (2023). Realtime Multi-factor Dynamic Thermal Comfort Estimation for Indoor Environments. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34171-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34170-0

  • Online ISBN: 978-3-031-34171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics