Skip to main content

Semantic Interoperability for Managing Energy-Efficiency and IEQ: A Short Review

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops (AIAI 2023)

Abstract

With the rise of the Internet of Things and Smart Home industries, there is a real opportunity to increase the energy efficiency of buildings and improve the indoor experience of their occupants. However, as these industries continue to grow, so does the number of data sources in the energy sector in recent years. This can lead to suboptimal exploitation of these data and even to dualities and misunderstandings. As a result, semantic interoperability in the energy sector is now more necessary than ever. Combining event processing to handle data quantities, semantics to manage numerous data streams, and background ontologies will increase prompt identification of all information. In this context, this short review aims to explore state-of-the-art semantic ontologies and their utilization in the energy sector, with an additional emphasis on the indoor environment and air quality. Furthermore, a semantically enriched framework for a smart home will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en#saving-energy

  2. https://www.euronews.com/green/2022/12/09/europes-energy-crisis-in-data-which-countries-have-the-best-and-worst-insulated-homes

  3. Li, H., Hong, T.: A semantic ontology for representing and quantifying energy flexibility of buildings. Adv. Appl. Energy 8, 100113 (2022). ISSN 2666-7924, https://doi.org/10.1016/j.adapen.2022.100113

  4. Rohde, L., Larsen, T.S., Jensen, R.L., Larsen, O.K.: Framing holistic indoor environment: definitions of comfort, health and well-being. Indoor Built Environ. 29(8), 1118–1136 (2020). https://doi.org/10.1177/1420326X19875795

    Article  Google Scholar 

  5. Dimara, A., Anagnostopoulos, C.-N., Kotis, K., Krinidis, S., Tzovaras, D.: BEMS in the era of internet of energy: a review. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds.) AIAI 2021. IAICT, vol. 627, pp. 465–476. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79150-6_37

    Chapter  Google Scholar 

  6. Anagnostopoulos, C.-N.: Saving Energy with Comfort: A Semantic Digital Twin Approach for Smart Buildings (2022)

    Google Scholar 

  7. Semantic interoperability, 14 February 2022. Wikipedia https://en.wikipedia.org/wiki/Semantic_interoperability

  8. Bonino, D., Corno, F.: DogOnt - ontology modeling for intelligent domotic environments. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 790–803. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_51

    Chapter  Google Scholar 

  9. Tayur, V.M., Suchithra, R.: A comprehensive ontology for Internet of Things (coIoT). In: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). IEEE (2019)

    Google Scholar 

  10. Fensel, A., et al.: Sesame-s: semantic smart home system for energy efficiency. Informatik-Spektrum 36(1), 46–57 (2013)

    Google Scholar 

  11. Ploennigs, J., Hensel, B., Dibowski, H., Kabitzsch, K.: BASont - a modular, adaptive building automation system ontology. In: IECON 2012–38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, pp. 4827–4833 (2012). https://doi.org/10.1109/IECON.2012.6389583

  12. Reinisch, C., Kofler, M.J., Kastner, W.: ThinkHome: a smart home as digital ecosystem. In: 4th IEEE International Conference on Digital Ecosystems and Technologies. IEEE (2010)

    Google Scholar 

  13. Appliances, S.: Smartm2m; smart appliances; reference ontology and onem2m mapping (2017)

    Google Scholar 

  14. Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21545-7_9

    Chapter  Google Scholar 

  15. Haghgoo, M., et al.: SARGON-smart energy domain ontology. IET Smart Cities 2(4), 191–198 (2020)

    Google Scholar 

  16. Kott, J., Kott, M.: Generic ontology of energy consumption households. Energies 12(19), 3712 (2019)

    Article  Google Scholar 

  17. Shah, N., Chao, K.-M., Zlamaniec, T., Matei, A.: Ontology for home energy management domain. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds.) DICTAP 2011. CCIS, vol. 167, pp. 337–347. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22027-2_28

    Chapter  Google Scholar 

  18. Spoladore, D., et al.: ComfOnt: a semantic framework for indoor comfort and energy saving in smart homes. Electronics 8(12), 1449 (2019)

    Google Scholar 

  19. Rahman, H., Hussain, M.I.: A comprehensive survey on semantic interoperability for Internet of Things: state-of-the-art and research challenges. Trans Emerging Tel Tech. 31, e3902 (2020). https://doi.org/10.1002/ett.3902

    Article  Google Scholar 

  20. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Semantic technologies for the IoT - an inter-IoT perspective. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany, pp. 271–276 (2016). https://doi.org/10.1109/IoTDI.2015.22

  21. De Nicola, A., Villani, M.L.: Smart city ontologies and their applications: a systematic literature review. Sustainability 13(10), 5578 (2021). https://doi.org/10.3390/su13105578

    Article  Google Scholar 

  22. Maret, P., Laforest, F., Lanquetin, D.: A semantic web model for ad hoc context-aware virtual communities application to the smart place scenario. In: Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS), Lisbon, Portugal, 27–30 April 2014, vol. 2, pp. 591–598 (2014)

    Google Scholar 

  23. De Nicola, A., Melchiori, M., Villani, M.L.: Creative design of emergency management scenarios driven by semantics: an application to smart cities. Inf. Syst. 81, 21–48 (2019)

    Article  Google Scholar 

  24. Kurte, K., Potnis, A., Durbha, S.: Semantics-enabled spatio-temporal modeling of earth observation data: an application to flood monitoring. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, Chicago, IL, USA, 5 November 2019, pp. 41–50 (2019)

    Google Scholar 

  25. Elmhadhbi, L., Karray, M.H., Archimède, B.: A modular ontology for semantically enhanced interoperability in operational disaster response. In: Proceedings of the 16th International Conference on Information Systems for Crisis Response and Management-ISCRAM 2019, Valencia, Spain, 19–22 May 2019, pp. 1021–1029 (2019)

    Google Scholar 

  26. Chehade, S., Matta, N., Pothin, J.B., Cogranne, R.: Handling effective communication to support awareness in rescue operations. J. Contingencies Crisis Manag. 28, 307–323 (2020)

    Article  Google Scholar 

  27. The Empathi Ontology. https://shekarpour.github.io/empathi.io

  28. Benaben, F., et al.: An AI framework and a metamodel for collaborative situations: application to crisis management contexts. J. Contingencies Crisis Manag. 28, 291–306 (2020)

    Article  Google Scholar 

  29. Wu, J., Orlandi, F., AlSkaif, T., O’Sullivan, D., Dev, S.: A semantic web approach to uplift decentralized household energy data. Sustain. Energy Grids Netw. 32, 100891 (2022). ISSN 2352-4677, https://doi.org/10.1016/j.segan.2022.100891

  30. Li, H., Hong, T.: A semantic ontology for representing and quantifying energy flexibility of buildings. Adv. Appl. Energy 8, 100113 (2022), ISSN 2666-7924, https://doi.org/10.1016/j.adapen.2022.100113

  31. Gunge, V.S., Yalagi, P.S.: Smart home automation: a literature review. Int. J. Comput. Appl. 975, 8887 (2016)

    Google Scholar 

  32. Spoladore, D., Mahroo, A., Trombetta, A., Sacco, M.: ComfOnt: a semantic framework for indoor comfort and energy saving in smart homes. Electronics 8(12), 1449 (2019). https://doi.org/10.3390/electronics8121449

    Article  Google Scholar 

  33. Mahroo, A., Spoladore, D., Nolich, M., Buqi, R., Carciotti, S., Sacco, M.: Smart cabin: a semantic-based framework for indoor comfort customization inside a cruise cabin. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Fourth International Congress on Information and Communication Technology. AISC, vol. 1041, pp. 41–53. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0637-6_4

    Chapter  Google Scholar 

  34. Eleftheriou, O., Dimara, A., Kotis, K., Anagnostopoulos, C.-N.: Saving Energy with Comfort: A Semantic Digital Twin Approach for Smart Buildings (2022)

    Google Scholar 

  35. Ambient air pollution database, World Health Organization (WHO). https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ambient-air-pollution

  36. Ghorbani, A., Zamanifar, K.: Type-2 fuzzy ontology-based semantic knowledge for indoor air quality assessment. Appl. Soft Comput. 121, 108658 (2022). ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2022.108658

  37. Silva, M., Felipe, L.: \(<\)Semantic Enrichment of Sensor Data: A Case Study in Environmental Health\(>\). Goiânia, 2021. 112p. MSc. Master’s Degree Monograph. Programa de Pós-Graduação em Ciência da Computação (PPGCC), Instituto de Informática (INF), Universidade Federal de Goiás

    Google Scholar 

  38. Adeleke, J.A., Moodley, D.: (2015) An ontology for proactive indoor environmental quality monitoring and control. In: Proceedings of the 2015 Annual Research Conference on South African Institute of Computer Scientists and Information Technologists (SAICSIT ’15). Association for Computing Machinery, New York, Article 2, 1–10 (2015). https://doi.org/10.1145/2815782.2815816

  39. Fernández-López, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: from ontological art towards ontological engineering. In: Engineering Workshop on Ontological Engineering (AAAI97) (1997)

    Google Scholar 

  40. Dimara, A., et al.: Self-healing of semantically interoperable smart and prescriptive edge devices in IoT. Appl. Sci. 12(22), 11650 (2022)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the PRECEPT project, funded by the EU H2020 under Grant Agreement No. 958284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Dimara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzouvaras, C. et al. (2023). Semantic Interoperability for Managing Energy-Efficiency and IEQ: A Short Review. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34171-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34170-0

  • Online ISBN: 978-3-031-34171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics