Skip to main content

Conditioned Fully Convolutional Denoising Autoencoder for Energy Disaggregation

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops (AIAI 2023)

Abstract

Energy management increasingly requires tools to support decisions for improving consumption. This is achieved not only obtaining feedback from current systems but also using prior knowledge about human behaviour. The advances of data-driven models provide techniques like Non-Intrusive Load Monitoring (NILM) which are capable of estimating energy demand of appliances from total consumption. In addition, deep learning models have improved accuracy in energy disaggregation using separated networks for each device. However, the complexity can increase in large facilities and feedback may be impaired for a proper interpretation. In this work, a deep neural network based on a Fully Convolutional denoising AutoEncoder is proposed for energy disaggregation that uses a conditioning input to modulate the estimation aimed to one specific appliance. The model performs a complete disaggregation using a network whose modulation to target the estimation can be steered by the user. Experiments are done using data from a hospital facility and evaluating reconstruction errors and computational efficiency. The results show acceptable errors compared to methods that require various networks and a reduction of the complexity and computational costs, which can allow the user to be integrated into the analysis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboulian, A., et al.: NILM dashboard: a power system monitor for electromechanical equipment diagnostics. IEEE Trans. Ind. Inf. 15(3), 1405–1414 (2018)

    Article  Google Scholar 

  2. Angelis, G.F., Timplalexis, C., Krinidis, S., Ioannidis, D., Tzovaras, D.: NILM applications: literature review of learning approaches, recent developments and challenges. Energy Build., 111951 (2022)

    Google Scholar 

  3. Barker, S., Kalra, S., Irwin, D., Shenoy, P.: NILM redux: the case for emphasizing applications over accuracy. In: NILM-2014 Workshop. Citeseer (2014)

    Google Scholar 

  4. Bonfigli, R., Felicetti, A., Principi, E., Fagiani, M., Squartini, S., Piazza, F.: Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation. Energy Build. 158, 1461–1474 (2018)

    Article  Google Scholar 

  5. Chen, K., Zhang, Y., Wang, Q., Hu, J., Fan, H., He, J.: Scale-and context-aware convolutional non-intrusive load monitoring. IEEE Trans. Power Syst. 35(3), 2362–2373 (2019)

    Article  Google Scholar 

  6. Dhingra, B., Liu, H., Yang, Z., Cohen, W.W., Salakhutdinov, R.: Gated-attention readers for text comprehension. arXiv preprint arXiv:1606.01549 (2016)

  7. Dumoulin, V., et al.: Feature-wise transformations. Distill (2018). https://doi.org/10.23915/distill.00011, https://distill.pub/2018/feature-wise-transformations

  8. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  9. Ehrhardt-Martinez, K., Donnelly, K.A., Laitner, S., et al.: Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. American Council for an Energy-Efficient Economy Washington, DC (2010)

    Google Scholar 

  10. Elmqvist, N., Moere, A.V., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011)

    Article  Google Scholar 

  11. Gans, W., Alberini, A., Longo, A.: Smart meter devices and the effect of feedback on residential electricity consumption: evidence from a natural experiment in Northern Ireland. Energy Econ. 36, 729–743 (2013)

    Article  Google Scholar 

  12. García, D., Díaz, I., Pérez, D., Cuadrado, A.A., Domínguez, M., Morán, A.: Interactive visualization for NILM in large buildings using non-negative matrix factorization. Energy Build. 176, 95–108 (2018)

    Article  Google Scholar 

  13. Garcia-Perez, D., Perez-Lopez, D., Diaz-Blanco, I., Gonzalez-Muniz, A., Dominguez-Gonzalez, M., Vega, A.A.C.: Fully-convolutional denoising auto-encoders for NILM in large non-residential buildings. IEEE Trans. Smart Grid 12(3), 2722–2731 (2020)

    Article  Google Scholar 

  14. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  16. Kaselimi, M., Doulamis, N., Voulodimos, A., Protopapadakis, E., Doulamis, A.: Context aware energy disaggregation using adaptive bidirectional LSTM models. IEEE Trans. Smart Grid 11(4), 3054–3067 (2020)

    Article  Google Scholar 

  17. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, pp. 55–64 (2015)

    Google Scholar 

  18. Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Scientific data 2(1), 1–14 (2015)

    Article  Google Scholar 

  19. Kim, J., Le, T., Kim, H.: Nonintrusive load monitoring based on advanced deep learning and novel signature. Comput. Intell. Neurosci. 2017, 4216281–4216281 (2017)

    Article  Google Scholar 

  20. Kolter, J.Z., Jaakkola, T.: Approximate inference in additive factorial HMMs with application to energy disaggregation. In: Artificial Intelligence and Statistics, pp. 1472–1482 (2012)

    Google Scholar 

  21. Makonin, S., Ellert, B., Bajic, I.V., Popowich, F.: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Scientific Data 3(160037), 1–12 (2016)

    Google Scholar 

  22. Mauch, L., Yang, B.: A new approach for supervised power disaggregation by using a deep recurrent LSTM network. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 63–67. IEEE (2015)

    Google Scholar 

  23. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  25. do Nascimento, P.P.M.: Applications of deep learning techniques on NILM. Diss. Universidade Federal do Rio de Janeiro (2016)

    Google Scholar 

  26. Pereira, L., Nunes, N.: Performance evaluation in non-intrusive load monitoring: datasets, metrics, and tools-a review. Wiley Interdisciplinary Reviews: data mining and knowledge discovery 8(6), e1265 (2018)

    Google Scholar 

  27. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: visual reasoning with a general conditioning layer. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  28. Schirmer, P.A., Mporas, I.: Non-Intrusive load monitoring: a review. IEEE Transactions on Smart Grid (2022)

    Google Scholar 

  29. Völker, B., Pfeifer, M., Scholl, P.M., Becker, B.: A versatile high frequency electricity monitoring framework for our future connected home. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds.) SESC 2019. LNICST, vol. 315, pp. 221–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45694-8_17

    Chapter  Google Scholar 

  30. Wang, Z., Samsten, I., Mochaourab, R., Papapetrou, P.: Learning time series counterfactuals via latent space representations. In: Soares, C., Torgo, L. (eds.) DS 2021. LNCS (LNAI), vol. 12986, pp. 369–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88942-5_29

    Chapter  Google Scholar 

  31. Zhuang, M., Shahidehpour, M., Li, Z.: An overview of non-intrusive load monitoring: approaches, business applications, and challenges. In: 2018 International Conference on Power System Technology (POWERCON), pp. 4291–4299. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (MCIN/AEI/ 10.13039/501100011033) under grants PID2020-115401GB-I00 and PID2020-117890RB-I00. Data were provided by Hospital of León and SUPPRESS Research Group of University of León within the project DPI2015-69891-C2-1/2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, D. et al. (2023). Conditioned Fully Convolutional Denoising Autoencoder for Energy Disaggregation. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34171-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34170-0

  • Online ISBN: 978-3-031-34171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics