Skip to main content

Visualizing Cell Motility Patterns from Time Lapse Videos with Interactive 2D Maps Generated with Deep Autoencoders

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops (AIAI 2023)

Abstract

Cell motility, the ability of cells to move, is crucial in a wide range of biological processes; for instance, in cancer, it is directly related to metastasis. However, it is a complex phenomenon which is not well-understood yet, and studies are mainly done by human observation, which is subjective and error-prone. We intend to provide an automated mechanism to analyze the movement patterns that occur in in-vitro cell cultures, which can be registered by time lapse microscopy. Our approach, which is still a work in progress, utilizes an interactive 2D map that organizes motility patterns based on their similarity, enabling exploratory analysis. We extract the velocity fields that represent the cell displacements between consecutive frames and use a deep convolutional autoencoder to project a characterization of short video sequences of smaller parts of the original videos into a 10D latent space. The samples (small videos) are visualized in a 2D map using the Uniform Manifold Approximation and Projection (UMAP). The possibilities and extent of our method are showcased through a small interactive application that allows to explore all the types of cell motility patterns present in the training videos on a 2D map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The algorithm was implemented with Object Tracking of OpenCV-Python, using the following parameters: pyr_scale = 0.5, levels = 3, winsize = 60, iterations = 3, poly_n = 5, poly_sigma = 1.1, flags = cv2.OPTFLOW_FARNEBACK_GAUSSIAN.

  2. 2.

    Head and Neck research group from the Instituto de Investigación Sanitaria del Principado de Asturias (ISPA, https://www.ispasturias.es).

References

  1. Ali, M., Jones, M.W., Xie, X., Williams, M.: Timecluster: dimension reduction applied to temporal data for visual analytics. Vis. Comput. 35(6), 1013–1026 (2019)

    Article  Google Scholar 

  2. Allaoui, M., Aissa, N.E.H.S.B., Belghith, A.B., Kherfi, M.L.: A machine learning-based tool for exploring covid-19 scientific literature. In: 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), pp. 1–7. IEEE (2021)

    Google Scholar 

  3. Camley, B.A., Rappel, W.J.: Physical models of collective cell motility: from cell to tissue. J. Phys. D Appl. Phys. 50(11), 113002 (2017)

    Article  Google Scholar 

  4. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1932–1939. IEEE (2009)

    Google Scholar 

  5. Colque, R.V.H.M., Caetano, C., de Andrade, M.T.L., Schwartz, W.R.: Histograms of optical flow orientation and magnitude and entropy to detect anomalous events in videos. IEEE Trans. Circuits Syst. Video Technol. 27(3), 673–682 (2016)

    Article  Google Scholar 

  6. Cornejo, K.M., et al.: Succinate dehydrogenase B: a new prognostic biomarker in clear cell renal cell carcinoma. Hum. Pathol. 46(6), 820–826 (2015)

    Article  Google Scholar 

  7. Fang, Z., Sun, Q., Yang, H., Zheng, J.: SDHB suppresses the tumorigenesis and development of ccRCC by inhibiting glycolysis. Front. Oncol. 11, 639408 (2021)

    Article  Google Scholar 

  8. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  9. Hoshikawa, E., et al.: Cells/colony motion of oral keratinocytes determined by non-invasive and quantitative measurement using optical flow predicts epithelial regenerative capacity. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  10. Huang, Y., Hao, L., Li, H., Liu, Z., Wang, P.: Quantitative analysis of intracellular motility based on optical flow model. J. Healthcare Eng. 2017, 1848314 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 (2012)

    Google Scholar 

  13. Ladoux, B., Mège, R.M.: Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017)

    Article  Google Scholar 

  14. Linehan, W.M., et al.: The metabolic basis of kidney cancer. Cancer Discov. 9(8), 1006–1021 (2019)

    Article  Google Scholar 

  15. Liu, Y.J., Zhang, J.K., Yan, W.J., Wang, S.J., Zhao, G., Fu, X.: A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Trans. Affect. Comput. 7(4), 299–310 (2015)

    Article  Google Scholar 

  16. McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2d:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5145–5152. IEEE (2021)

    Google Scholar 

  17. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  18. Morehead, A., Chantapakul, W., Cheng, J.: Semi-supervised graph learning meets dimensionality reduction. arXiv preprint arXiv:2203.12522 (2022)

  19. Patterson, J., Gibson, A.: Deep learning: a practitioner’s approach. O’Reilly Media, Inc. (2017)

    Google Scholar 

  20. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  21. Stuelten, C.H., Parent, C.A., Montell, D.J.: Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat. Rev. Cancer 18(5), 296–312 (2018)

    Article  Google Scholar 

  22. Te Boekhorst, V., Preziosi, L., Friedl, P.: Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32(1), 491–526 (2016)

    Article  Google Scholar 

  23. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998). https://doi.org/10.1016/S1361-8415(98)80022-4

    Article  Google Scholar 

  24. Verburg, M., Menkovski, V.: Micro-expression detection in long videos using optical flow and recurrent neural networks. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1, Supplement 1), S61–S72 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.040. https://www.sciencedirect.com/science/article/pii/S1053811908011683, mathematics in Brain Imaging

  26. Vig, D.K., Hamby, A.E., Wolgemuth, C.W.: On the quantification of cellular velocity fields. Biophys. J . 110(7), 1469–1475 (2016)

    Article  Google Scholar 

  27. Wang, Y., Yu, Z., Wang, Z.: A temporal clustering method fusing deep convolutional autoencoders and dimensionality reduction methods and its application in air quality visualization. Chemom. Intell. Lab. Syst. 227, 104607 (2022)

    Article  Google Scholar 

  28. Yang, J., et al.: Functional deficiency of succinate dehydrogenase promotes tumorigenesis and development of clear cell renal cell carcinoma through weakening of ferroptosis. Bioengineered 13(4), 11187–11207 (2022)

    Article  Google Scholar 

  29. Yong, C., Stewart, G.D., Frezza, C.: Oncometabolites in renal cancer. Nat. Rev. Nephrol. 16(3), 156–172 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación / Agencia Estatal de Investigación (MCIN/AEI/ 10.13039/501100011033) grant [PID2020-115401GB-I00]. The authors would also like to thank the financial support provided by the Principado de Asturias government through the predoctoral grant “Severo Ochoa”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, A. et al. (2023). Visualizing Cell Motility Patterns from Time Lapse Videos with Interactive 2D Maps Generated with Deep Autoencoders. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34171-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34170-0

  • Online ISBN: 978-3-031-34171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics