Abstract
In the era of the Internet of Things (IoT), billions of sensors collect data from their environment and process it to enable intelligent decisions at the right time. However, transferring massive amounts of disparate data in complex environments is a challenging issue. The convergence of Artificial Intelligence (AI) and the Internet of Things has breathed new life into IoT operations and human-machine interaction. Resource-constrained IoT devices typically need more data storage and processing capacity to build modern AI models. The intuitive solution integrates cloud computing technology with AIoT and leverages cloud-side servers’ powerful and flexible processing and storage capacity. This paper briefly introduces IoT and AIoT architectures in the context of cloud computing, fog computing and more. Finally, an overview of the NEMO [1] concept is presented. The NEMO project aims to establish itself as the “game changer” of AIoT-Edge-Cloud Continuum by bringing intelligence closer to data, making AI-as-a-Service an integral part of self-organizing networks orchestrating micro-service execution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
NEMO, Horizon EU - funded project, GA No.101070118. https://meta-os.eu/
Peres, R.S., Jia, X., Lee, J., Sun, K.A.W.J.: Industrial artificial intelligence in industry 4.0 - systematic review, challenges and outlook. IEEE Access 8, 220121–220139 (2020). https://doi.org/10.1109/ACCESS.2020.3042874
Ramamurthy, H., Prabhu, B.S., Gadh, R., Madni, A.M.: Wireless industrial monitoring and control using a smart sensor platform. IEEE Sens. J. 7(5), 611–618 (2007) https://doi.org/10.1109/JSEN.2007.894135
The European Cloud, Edge and IoT Continuum Initiative (2023). https://eucloudedgeiot.eu/the-eu-vision-on-the-cei-continuum/
Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016). https://doi.org/10.1109/MC.2016.145
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the ACM 1st Ed. of the MCC Workshop on Mobile Cloud Computing (MCC’12), pp. 13–16. ACM (2012)
Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018)
Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Network. 24(5), 2795–2808 (2016). https://doi.org/10.1109/TNET.2015.2487344
Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for mobile-edge computing systems. In: Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT’16), pp. 1451–1455. IEEE (2016)
Yang, L., Liu, B., Cao, J., Sahni, Y., Wang, Z.: Joint computation partitioning and resource allocation for latency sensitive applications in mobile edge clouds. In: Proceedings of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD’17), pp. 246–253. IEEE (2017)
Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog Computing: towards minimizing delay in the internet of things. In: Proceedings of the IEEE International Conference on Edge Computing (EDGE’17), pp. 17–24. IEEE (2017)
Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)
Liu, J., Zhang, A.Q.: Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6, 12825–12837 (2018)
Li, L., Guan, Q., Jin, L., Guo, M.: Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7, 9912–9925 (2019)
Mashal, I., Alsaryrah, O., Chung, T.Y., Yang, C.Z., Kuo, W.H., Agrawal, D.P.: Choices for interaction with things on internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015)
International Telecommunication Union – Telecommunication Standardization Sector (ITU-T): Recommendation Y4000/Y.2060 (06/12): Overview of the Internet of Things (2012). https://www.itu.int/rec/T-REC-Y.2060-201206-I
Burhan, M., Rehman, R.A., Khan, B., Kim, B.-S.: IoT elements, layered architectures and security issues: a comprehensive survey. Sensors (MDPI) 18(9), 2796. https://doi.org/10.3390/s18092796
Antão, L., Pinto, R., Reis, J., Gonçalves, G.: Requirements for testing and validating the industrial internet of things. In: Proceedings of the 2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW’18), pp. 110–115. IEEE (2018)
Sanzgiri, A., Dasgupta, D.: Classification of insider threat detection techniques. In: Proceedings of the 11th Annual Cyber and Information Security Research Conference (CISRC’16), pp. 1–4. ACM (2016). https://doi.org/10.1145/2897795.2897799
Sethi, P., Sarangi, S.R.: Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 1–25 (2017). https://doi.org/10.1155/2017/9324035
Viel, F., Silva, L.A., Valderi Leithardt, R.Q., Zeferino, C.A.: Internet of things: concepts, architectures and technologies. In: Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON’18), pp. 909–916. IEEE (2018). https://doi.org/10.1109/INDUSCON.2018.8627298
Sopelsa Neto, N.F., et al.: A study of multilayer perceptron networks applied to classification of ceramic insulators using ultrasound. Appl. Sci. 11(4), 1592 (2021). https://doi.org/10.3390/app11041592
Leithardt, V., Santos, D., Silva, L., Viel, F., Zeferino, C., Silva, J.: A solution for dynamic management of user profiles in IoT environments. IEEE Lat. Am. Trans. 18(7), 1193–1199 (2020). https://doi.org/10.1109/TLA.2020.9099759
Stefenon, S.F., Kasburg, C., Nied, A., Klaar, A.C.R., Ferreira, F.C.S., Branco, N.W.: Hybrid deep learning for power generation forecasting in active solar trackers. IET Gener. Transm. Distrib. 14(23), 5667–5674 (2020)
Kasburg, C., Stefenon, S.F.: Deep learning for photovoltaic generation forecast in active solar trackers. IEEE Lat. Am. Trans. 17(12), 2013–2019 (2019)
Guo, T., Yu, K., Aloqaily, M., Wan, S.: Constructing a prior-dependent graph for data clustering and dimension reduction in the edge of AIoT. Futur. Gener. Comput. Syst. 128, 381–394 (2021)
Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated learning with non-i.i.d. data in AIoT. IEEE Trans. Ind. Inform. 18(2), 1310–1321 (2022). https://doi.org/10.1109/TII.2021.3073925
Muniz, R.N., et al.: Tools for measuring energy sustainability: a comparative review. Energies (MDPI) 13(9), 2366 (2020). https://doi.org/10.3390/en13092366
da Silva, L.D.L., Pereira, T.F., Leithardt, V.R.Q., Seman, L.O., Zeferino, C.A.: Hybrid impedance-admittance control for upper limb exoskeleton using electromyography. Appl. Sci. (MDPI) 10(20), 7146 (2020). https://doi.org/10.3390/app10207146
Kaur, J., Khan, M.A., Iftikhar, M., Imran, M., Emad Ul Haq, Q.: Machine learning techniques for 5G and beyond. IEEE Access 9, 23472–23488 (2021). https://doi.org/10.1109/ACCESS.2021.3051557
Lopes, H., Pires, I.M., Sánchez San Blas, H., García-Ovejero, R., Leithardt, V.: PriADA: management and adaptation of information based on data privacy in public environments. Computers (MDPI) 9(4), 77 (2020). https://doi.org/10.3390/computers9040077
Pinto, H., Américo, J., Leal, O., Stefenon, S.: Development of measurement device and data acquisition for electric vehicle. Revista Gestão Inovação e Tecnologias 11(11), 5809–5822 (2021). https://doi.org/10.7198/geintec.v11i1.1203
Stefenon, S.F., Furtado Neto, C.S., Coelho, T.S., Nied, A., Yamaguchi, C.K., Yow, K.-C.: Particle swarm optimization for design of insulators of distribution power system based on finite element method. Electr. Eng. 104(2), 615–622 (2021). https://doi.org/10.1007/s00202-021-01332-3
Permutive (2023). https://support.permutive.com/hc/en-us/articles/360012435279
Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., Lv, W.: Edge computing security: state of the art and challenges. Proc. IEEE 107(8), 1608–1631 (2019). https://doi.org/10.1109/JPROC.2019.2918437
Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018). https://doi.org/10.1109/JIOT.2017.2750180
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7
Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951
Acknowledgements
Part of this paper has been based on the context of the “NEMO” (“Next Generation Meta Operating System”) Project. This project has received funding from the EU Horizon Europe research and innovation Programme under Grant Agreement No. 101070118.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Belesioti, M. et al. (2023). Putting Intelligence into Things: An Overview of Current Architectures. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-34171-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34170-0
Online ISBN: 978-3-031-34171-7
eBook Packages: Computer ScienceComputer Science (R0)