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Abstract. This article focuses on the supervised classification of
datasets with a large number of variables and a small number of in-
stances. This is the case, for example, for microarray data sets commonly
used in bioinformatics. Complex classifiers that require estimating statis-
tics over many variables are not suitable for this type of data. Proba-
bilistic classifiers with low-order probability tables, e.g. NB and AODE,
are good alternatives for dealing with this type of data. AODE usually
improves NB in accuracy, but suffers from high spatial complexity since
k models, each with n+1 variables, are included in the AODE ensemble.
In this paper, we propose MiniAnDE, an algorithm that includes only
a small number of heterogeneous base classifiers in the ensemble, i.e.,
each model only includes a different subset of the k predictive variables.
Experimental evaluation shows that using MiniAnDE classifiers on mi-
croarray data is feasible and outperforms NB and other ensembles such
as bagging and random forest.

Keywords: Bayesian network classifiers · Averaged n-Dependence Es-
timators · Microarray data · High dimensionality.

1 Introduction

Supervised classification, i.e. predicting the category c ∈ dom(C) = {c1, . . . , cr}
for an object x defined over a set of attributes X = {X1, . . . , Xk}, is one of the
most profusely tackled tasks in machine learning. The objective is to learn a
classifier C : X1× · · · ×Xk → C, from a data set D = {(x(i), c(i))}mi=1, such that
C generalises well to new data.

In this paper we focus on a particular niche of supervised classification prob-
lems: data defined over a large number of features/attributes and with a scarce
number of instances. Such data sets, where k ≫ m, are common in microarray
data problems [1], where the expression level of thousands of genes is analysed
simultaneously. Still, due to the cost of obtaining samples, only a few dozen
or a few hundred cases are available. This scarcity of cases means that models
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that need to estimate complex statistics, e.g. higher-order statistics, or measures
subject to a particular context (e.g. a deep branch in a decision tree) cannot be
reliably learned. A common solution to combat this curse of dimensionality is
to perform a prior feature selection process [5]. However, in this paper we focus
on a different solution: using models that, while overall may be complex, only
require estimating statistics on a very small number of variables.

The NB classifier [19] is the simplest Bayesian network model used for clas-
sification. It is based on the hypothesis (assumption) that all the predictive
attributes are independent of each other given the value of the class variable
(Figure 1). This independence hypothesis gives rise to the following factorisa-
tion:

P (c, x1, . . . , xk) = P (c)

k∏
i=1

P (xi|c), (1)

which enables: (1) NB does not require structural learning; (2) parametric learn-
ing is very efficient (a single pass through the BD); and (3) it is only necessary
to estimate bi-variate statistics, so a small number of cases is enough.

Among the different improvements made to NB trying to circumvent the
independence hypothesis, one of the most outstanding for its exceptional perfor-
mance is AODE [20]. AODE can be seen as an ensemble formed by n SPODE
(Super Parent One Dependence Estimator) classifiers, i.e. a NB extended with
one attribute also being the parent of the other features (Figure 2). Thus, in a
SPODE each variable depends on another variable apart from the class, which
combined with the fact that AODE includes all the n possible SPODEs, allows
AODE to consider a large number of possible dependencies between attributes.
Despite the strong relaxation of the NB independence assumption that AODE
implies, parametric learning is still very efficient and only requires estimating
three-variate statistics, so the number of cases needed remains moderate. More
dependencies are considered in AnDE [21], where n features play the role of
super-parents in each member (SPnDE) of the ensemble. AnDE (n ≥ 2) can
manage more complex dependency relations than AODE (A1DE), however also a
greater number of cases is necessary to obtain reliable estimations for (n+1)−ary
statistics.

The motivation for this work comes from the fact that when dealing with
microarray data, the main problem related to AnDE, even with n = 1 (AODE),
is the size of the ensemble, which can easily run out of memory. For example, let
us consider a problem with k = 10000 attributes, each taking 5 different values,
as well as the class. In this case A1DE have to store 10000 SPODEs, each one
with 10000 probability tables of size 53, which assuming 32bits per float value
means 50 GB. Of course, things are worse if we increase n, giving rise to the
problem of dealing with big models [3].

In this work we propose MiniAnDE, an algorithm that tries to build small
AnDE models in which only a subset of SPnDEs are included in the ensemble,
also limiting to a subset of X the features included in each SPnDE. To do
this, we introduce a structural learning stage in which relevant feature-class
and feature-feature relations are identified. In the second stage, SPnDEs are
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constructed on the basis of the identified relevant relations. Experiments over
nineteen microarray datasets confirm the competitiveness of our approach.

This paper is organized as follows. Section 2 revises the algorithm we took as
our baseline, Averaged n-Dependence Estimators [21]. Section 3 introduces the
MiniAnDE classifier proposed in this paper. Section 4 presents the experimen-
tal evaluation carried out. Finally, Section 5 concludes the paper and outlines
potential avenues for future research.

C

X3X2 XkX1
. . .

Fig. 1: Graphical structure of NB

C

X3X2 Xk

X1

. . .

Fig. 2: Graphical structure of SPODE

2 Averaged n-Dependence Estimators (AnDE)

Averaged n-Dependence Estimators (AnDE) [21] extend the AODE (A1DE) al-
gorithm by allowing n super-parent variables in each model (SPnDE). As n
grows, the classifier estimates probability distributions of higher dimension, thus
reducing its bias but probably increasing its variance, which however will be
reduced when all the predictions of the base models are aggregated by the en-
semble.

The class label c∗ of an instance x is obtained by:

c∗ = arg max
ci∈dom(C)

P (ci,x) =
∑

S∈(Xn)

P (ci,xS)
∏

Xj∈X−S

P (xj |ci,xS), (2)

where
(
X
n

)
represents the subsets of X having exactly n variables; xS is the

projection of x over S; the expression inside the summation is the factorization
of the joint probability carried out by the SPnDE; and the summation stand for
the aggregation carried out in the AnDE ensemble.

In particular, for A1DE, the previous expression reduces to:

c∗ = arg max
ci∈dom(C)

P (ci,x) =

k∑
l=1

P (ci,xl)
∏
j ̸=l

P (xj |ci,xl). (3)

The main problem in AnDE is due to its spatial complexity and the increase
in the number of samples needed to make reliable estimates of increasingly larger
statistics. Thus, A1DE requires n models, each with k− 1 distributions of order
3; A2DE requires O(n2) models each with k − 2 distributions of order 4; A3DE
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requires O(n3) models, each with k− 3 distributions of order 5; etc. This means
that in practice, AnDE can only be used with n = 1 for moderate/large domains
and with n = 2 for small domains.

In literature, we can find different approaches to make AnDE usable when n
and/or k grows. In [15], the A1DE ensemble is replaced by a single model whose
super-parent is a latent variable which is estimated by using the EM algorithm.
SAnDE [10] and SASAnDE [9] follow a model selection-based approach, which
relies on the assumption that the conditional mutual information of the super
parent set of attributes given the class is a good approximation of the result-
ing SPnDE performance. However, the study conducted in [4] over 43 datasets
challenges this assumption and the usefulness of using mutual information-based
model selection in the AnDE ensemble.

3 MiniAnDE

The main objective of the MiniAnDE classifier is to reduce the enormous spatial
complexity of AnDE which, in practice, impedes their use in databases with
thousands of variables (k) in the case of A1DE and hundreds in the case of A2DE.
The aim is to reduce both the number of SPnDEs generated (s) and the number
of variables included in each SPnDE (ri) so that s ≪ k and ri ≪ k. Thus,
we create much smaller and faster models that can handle high-dimensional
datasets.

As in [10], we need to select the variable(s) that will act as super-parent(s)
and thus give rise to the SPnDEs included in the AnDE model. In addition, we
also have to select the child features to be included in each SPnDE. Unlike previ-
ous work, instead of calculating information-based measures, we propose to use
a different machine learning model, a decision tree, from which the relationships
between features can be borrowed for our MiniAnDE model.

The use of decision trees (DTs) to select the relevant variables for a classi-
fication problem is quite old [8]. From a probabilistic point of view, the subset
of variables appearing in the tree could be seen to constitute the Markov blan-
ket of the class variable, i.e. the set of variables that makes the rest irrelevant
for classification purposes. Later, ensemble-based methods, in particular random
forests, have also been used to obtain the importance of predictive variables in
the classification process, using so-called out-of-bag estimation [7]. This tech-
nique has become very popular and can be found in almost any ML software,
e.g. Scikit-Learn.

In this paper we propose to use an ensemble of DTs to identify the SPnDEs
to be included in our MiniAnDE model. In addition to the ability of the DTs
to select the relevant variables for the class, we will also exploit the location
in which these variables are placed in the tree. Thus, it is well known that one
of the advantages of DTs is their context-based analysis of the data, where by
context we mean a (partial) branch of the three. Therefore, we traverse the tree
to identify all paths of length n and create an SPnDE for each of them by setting
the variables in the path as super-parents. Then, all variables in the tree that are
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adjacent to the super-parent variables are included as children in that SPnDE.
To obtain a more robust MiniAnDE model we consider a set of diverse DTs, that
is, an ensemble.

Algorithm 1 MiniAnDE
Require: Dataset D defined over X ∪ {C}; n; t
1: SP ← ∅
2: T ← ∅
3: for i← 1 to t do
4: T ← learn a DT from a sample of D
5: T ← T ∪ {T}
6: SP t ← {sets of n consecutive variables in T}
7: SP ← SP ∪ SP t

8: end for
9: ∀sp ∈ SP , children(sp)←

⋃
T∈T ∧sp∈T

{⋃
X∈sp adjacent(X,T )

}
10: M← ∅
11: for each sp ∈ SP do do
12: Create an SPnDE m with sp as super-parent and children(sp) as features
13: M←M∪ {m}
14: end for
15: returnM

Algorithm 1 provides a scheme of the previous idea. Let us illustrate its work-
ing process with an example taking n = 1 and t = 2. Let us also assume that
Figure 3a shows two DTs learnt from two different samples of D. The algorithm
starts with T1 and identify SP 1 = {{X1}, {X2}, {X3}}. Now SP ← SP 1 and
T2 is considered. The algorithm computes SP 2 = {{X1}, {X2}, {X3}, {X4}},
and so SP = {{X1}, {X2}, {X3}, {X4}}. Next, children sets are computed as:
children({X1}) = {X2, X3}, children({X2}) = {X1, X3, X4}, children({X3}) =
{X1, X2} and children({X4}) = {X2}. Therefore, the SP1DEs included in the
resulting MiniA1DE are those shown in Figure 3b. If the same process is ap-
plied with n = 2, SP 1 = {{X1, X2}, {X1, X3}, {{X2, X3}}, SP 2 = {{X1, X2},
{X1, X3}, {{X2, X3}, {{X2, X4}} and SP = {{X1, X2}, {X1, X3}, {X2, X3},
{X2, X4}}. Next, children sets are computed as: children({X1, X2}) =
{X3, X4}, children({X1, X3}) = {X2}, children({X2, X3}) = {X1, X4} and
children({X2, X4}) = {X1, X3}. Figure 4 shows the resulting MiniA2DE.

Like the original AnDE algorithm, MiniAnDE only works with discrete vari-
ables, so if numerical predictive attributes are included in the dataset, they must
first be discretized. Once the SPnDEs have been determined, only parametric
learning is required, which can be performed in a single pass through the dataset.
Therefore, the complexity of learning a MiniAnDE model is dominated by the
learning process of the set of decision trees. In this sense, it is worth noting
that due to the small number of instances in the microarray data, the obtained
tree will be shallow, which coupled with the use of only discrete (discretized)
variables, results in a fast learning process. On the other hand, inference is also
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(a) Ensemble with 2 decision trees:
T1 (left) and T2 (right)
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X2 X3

C X3
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C X2
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(b) Generated SP1DEs

Fig. 3: MiniA1DE obtained from the ensemble {T1, T2}

C X1 X2

X3 X4

C X1 X3

X2

C X2 X3

X1 X4

C X2 X4

X1 X3

Fig. 4: MiniA2DE obtained from the ensemble {T1, T2} in Fig. 3a

faster than in the original AnDE models, since only a few SPnDEs are aggregated
instead of k.

The MiniAnDE algorithm can be instantiated with any decision tree and
ensemble learning algorithm, e.g. bagging [6] or random forest [7]. This fact
together with the own DT/ensemble learning hyperparameters (pruning or no-
pruning, max depth, number of trees, etc.) provides a wide range of combinations
to generate the MiniAnDE classifier, making possible to fine-tuning it for a given
dataset.

To conclude this section, we present a possible extension of the MiniAnDE
algorithm. As with AnDE, MiniAnDE is expected to be a better estimator than
NB for posterior class labels probabilities. However, in some cases it is pos-
sible that some attribute configurations and class values may be missing or
underrepresented in the learning dataset, resulting in a nearly uniform poste-
rior probability distribution for the class given the input instance. To alleviate
this drawback, we produce the output as a convex combination of MiniAnDE
and NB, adding it to the ensemble according to a parameter α ∈ [0, 1]:
p(c|x) = αpNB(c|x) + (1 − α) pMiniAnDE(c|x). We compare the MiniAnDE al-
gorithm with α = 0 and α ̸= 0 in the experiments performed in Section 4.

4 Experimental evaluation

In the next sections we describe the datasets utilized, the algorithms evaluated,
the methodology employed, and analyze the results obtained.
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4.1 Data sets

Table 1 describes the 19 microarray data sets used to evaluate the proposed
algorithms, commonly used in the literature [1,5,12,22].

Table 1: Data sets used in the experimental evaluation. I is the number of instances,
N the number of predictible variables and K the number of classes.

Data Set Features

i n k

9 Tumors 60 5 726 9
11 Tumors 174 12 533 11
Breast 97 24 481 2
CNS 60 7 130 2
Colon 62 2 000 2
DLBCL 77 5 469 2
GLI 85 22 283 2
Leukemia 72 7 129 2
Leukemia 3 72 7 129 3
Leukemia 4 72 7 129 4

Data Set Features

i n k

Lung 203 12 600 5
Lymphoma 3 66 4 026 3
Lymphoma 9 96 4 026 9
Lymphoma 11 96 4 026 11
MLL 72 12 582 3
Ovarian 253 15 154 2
Prostate 102 12 600 2
SMK 187 19 993 2
SRBCT 83 2 308 4

4.2 Reproducibility

The entire MiniAnDE algorithm’s family has been programmed from scratch
using Java (OpenJDK 8) and the library WEKA 3.9.6 3. All experiments were
conducted on machines running the CentOS 7 operating system with an Intel
Xeon E5-2650 8-Core Processor limited to 8 threads and 32 GB of RAM per
execution.

To reproduce the experiments, all of the code and the execution scripts
are provided at GitHub 4. Regarding the data, for convenience, we provide in
OpenML5 a common source repository for the 19 datasets, with reference to the
original articles.

4.3 Algorithms

In this study, the following algorithms have been evaluated:

– The MiniAnDE algorithm introduced in Section 3, with n = 1 and n = 2.
The following parameters have been fine-tuned by using grid-search for each
dataset:

3 https://www.cs.waikato.ac.nz/ml/weka/’
4 https://github.com/ptorrijos99/mAnDE
5 https://www.openml.org/search?type=data&uploader_id=%3D_33148

https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/ptorrijos99/mAnDE
https://www.openml.org/search?type=data&uploader_id=%3D_33148
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• Bagging is considered to generate the ensemble of trees used to learn
the structure of those SPnDEs included in the MiniAnDE model. The
number of trees is taken from the set {50, 100, 150, 200}.

• The weight of NB is chosen from the set α =
0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. The case of α = 0 is al-
ways reported, as it corresponds to the canonical MiniAnDE as
introduced in Algorithm 1.

– The Naive Bayes algorithm [19].

– The Bagging ensemble algorithm [6]. The number of trees (50, 100, 150 and
200) is selected for each dataset by using grid-search.

– The Random Forest algorithm [7]. Default value
√
k is used to select the

random subset of variables evaluated at each split. The number of trees (50,
100, 150 and 200) is selected for each dataset by using grid-search.

Please, note that original AnDE algorithm [21] is not included because of
its spatial complexity. In fact, under the resources described in previous section,
A1DE algorithm only can cope with 1 out of the 19 datasets (colon), obtaining
an accuracy of 80.64.

4.4 Methodology

We have taken the following design decisions:

– Each algorithm has been evaluated employing a double cross-validation.
Leave-one-out cross-validation has been used for external validation, and
stratified 5-fold cross-validation has been used for the internal validation in
which the best hyperparameter(s) value(s) are selected by using grid-search.
This approach ensured that the results were robust and not influenced by
the specific partitioning of the data, especially given the small number of
instances in microarray data.

– Numerical variables are discretized. Discretization intervals are learn from
the training partition and then applied over the validation/test one. We used
the following procedure: (1) supervised entropy-based discretization follow-
ing Fayyad and Irani algorithm [13] was applied; and (2) those variables
left in a single interval are then discretized into 2 intervals (bins) by us-
ing unsupervised equal frequency. Note that variables discretized in a single
bin by Fayyad and Irani algorithm are those marginally independent to the
class, but can be relevant to the class when used in conjunction with other
attributes (e.g. as in an X-OR dataset).

– The study’s results have been analyzed using the methodology specified in
[11,17], and the analysis has been conducted using the exreport R package
[2]. The analysis begins by performing a Friedman test [16] with the null
hypothesis that all algorithms have equal performance. If the null hypothesis
is rejected, a posthoc test using Holm’s procedure [18] is carried out to
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compare all algorithms against the one ranked first by the Friedman test.
Both assessments are conducted at a significance level of 5%.

4.5 Results

The summary of the accuracy results is shown in Table 2, including the result
of each algorithm6 for each database as well as the total average of each algo-
rithm. The algorithm(s) with the highest accuracy are highlighted in bold. In
accordance with the procedure described in Section 4.4, we analyzed the results
of our experiments. We found evidence to reject the null hypothesis of equal
performance across all algorithms with a computed p-value of 1.490×10−2. The
detailed results of the posthoc test are presented in Table 3, which shows the
ranking generated by the Friedman test and the p-value adjusted using Holm’s
procedure (non-rejected null hypotheses are boldfaced), along with the number
of wins, ties, and losses for each algorithm versus the algorithm that ranked first.
Based on the statistical analysis, we draw the following conclusions:

Table 2: Accuracy of each algorithm.

Data Set Algorithm

mA1DE mA2DE mA1DE α > 0 mA2DE α > 0 NB Bagging RF

11 Tumors 83.91 85.06 89.66 88.51 84.48 87.36 85.06
9 Tumors 33.33 35.00 50.00 48.33 53.33 36.67 36.67
Breast 67.01 67.01 64.95 68.04 69.07 67.01 62.89
CNS 60.00 65.00 63.33 71.67 60.00 73.33 65.00
Colon 85.48 87.10 87.10 87.10 87.10 85.48 87.10
DLBCL 89.61 84.42 84.42 81.82 80.52 87.01 88.31
GLI 87.06 85.88 85.88 84.71 82.35 85.88 85.88
Leukemia 95.83 95.83 97.22 94.44 87.50 91.67 94.44
Leukemia 3 94.44 94.44 95.83 94.44 83.33 94.44 87.50
Leukemia 4 91.67 90.28 90.28 90.28 79.17 88.89 77.78
Lung 90.64 91.13 92.61 94.09 72.91 96.55 89.16
Lymphoma 11 77.08 81.25 90.62 91.67 91.67 81.25 84.38
Lymphoma 3 95.45 93.94 98.48 98.48 100.00 93.94 93.94
Lymphoma 9 78.12 76.04 89.58 91.67 95.83 81.25 81.25
MLL 94.44 95.83 97.22 95.83 90.28 93.06 94.44
Ovarian 97.63 98.42 97.63 98.02 92.49 98.02 95.26
Prostate 93.14 91.18 91.18 88.24 65.69 91.18 86.27
SMK 70.05 70.05 71.66 71.66 65.24 70.59 65.24
SRBCT 98.80 97.59 98.80 97.59 92.77 95.18 100.00

Mean 83.35 83.44 86.13 86.14 80.72 84.15 82.14

6 mAnDE denotes the canonical MiniAnDE algorithm (α = 0) and mAnDE α > 0
denotes its combination with NB using α > 0, the parameter α is set using a grid
search and CV, as noted above.
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Table 3: Post-hoc test results for the accuracy of each algorithm.

Algorithm p-value Rank Win Tie Loss

MiniA1DE (α > 0) - 2.84 - - -
MiniA2DE (α > 0) 7.073 × 10−1 3.11 9 4 6

MiniA2DE (α = 0) 2.419 × 10−1 4.00 11 5 3

Bagging 2.419 × 10−1 4.08 12 2 5

MiniA1DE (α = 0) 2.419 × 10−1 4.16 12 2 5
Random Forest 3.432× 10−2 4.74 14 2 3
Naive Bayes 8.492× 10−3 5.08 13 1 5

– The MiniA1DE algorithm with α > 0 is ranked in the first place, although
there is no significant difference (confidence level 0.05) with respect to the
other three MiniAnDE algorithms and bagging. A significant difference is
observed with respect to NB and random forest.

– Both MiniAnDE algorithms with α > 0 rank ahead, although without signif-
icant difference among them, of their counterpart canonical versions without
incorporating NB. This corroborated the fact that in some cases, due to the
small sample size in microarray datasets, it is good to incorporate the pre-
diction of a simple low-bias classifier.

– Regarding the use of n = 1 or n = 2, there do not seem to be major dif-
ferences in either MiniAnDE or MiniAnDE-NB, with either option working
better depending on the data set, resulting in an almost identical average
accuracy.

– NB is ranked in the last position, which is not unexpected due to the fact
that it is by far the simpler model tried. However, it is interesting to observe
the bad results obtained by RF, which is ranked behind bagging. It seems
that the use of pseudorandom DTs does not match with the large number
of variables and small data size of microarray data.

As for computational efficiency, the CPU time is shown in Table 4. As ex-
pected, NB is the fastest algorithm (linear in the number of variables and in-
stances). On the other hand, the MiniAnDE algorithms require an affordable
amount of CPU time, almost identical to bagging, the classifier it uses to train
the trees. Furthermore, the effect of using MiniAnDE with α > 0 is practically
insignificant. In general, we can say that the MiniAnDE approach is the best
choice among the tested hypotheses when dealing with microarray data.

5 Conclusions

A new algorithm for learning AnDE-like classifiers has been proposed. The
method is tailored to the special case of microarray data, where few data in-
stances are available but the number of variables is so large (thousands) that
standard AnDE classifiers do not fit in memory. The proposed algorithm incor-
porates a structural learning stage, which based on the use of shallow decision
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Table 4: Execution time per L.O.O. iteration (seconds) of each algorithm.

Data Set Algorithm

mA1DE mA2DE mA1DE α > 0 mA2DE α > 0 NB Bagging RF

11 Tumors 4.05 4.94 5.31 5.23 0.83 4.50 1.50
9 Tumors 0.96 0.92 0.95 1.05 0.20 0.95 0.37
Breast 3.23 3.27 3.49 3.58 0.83 3.44 1.41
CNS 0.59 0.66 0.66 0.68 0.18 0.61 0.42
Colon 0.72 0.74 0.74 0.77 0.18 0.66 0.18
DLBCL 0.40 0.43 0.54 0.42 0.14 0.37 0.28
GLI 2.08 2.07 1.94 2.12 0.66 1.58 1.03
Leukemia 0.46 0.48 0.44 0.45 0.19 0.47 0.34
Leukemia 3 0.60 0.53 0.52 0.52 0.17 0.53 0.37
Leukemia 4 0.73 0.60 0.69 0.66 0.19 0.57 0.36
Lung 3.69 3.81 3.80 4.03 0.95 4.00 1.36
Lymphoma 11 0.96 1.06 1.02 0.90 0.18 0.87 0.42
Lymphoma 3 0.37 0.35 0.32 0.33 0.12 0.28 0.24
Lymphoma 9 0.81 0.86 0.88 0.86 0.21 0.80 0.29
MLL 0.92 0.81 0.89 0.85 0.29 0.70 0.55
Ovarian 3.00 3.03 3.07 2.98 1.23 2.94 1.50
Prostate 1.38 1.27 1.38 1.46 0.41 1.37 0.71
SMK 7.42 8.98 7.69 7.98 1.22 7.46 2.07
SRBCT 0.28 0.29 0.29 0.29 0.09 0.30 0.18

Mean 1.72 1.85 1.82 1.85 0.44 1.70 0.72

trees, allows the selection of a few SPnDEs in the resulting MiniAnDE ensemble.
Furthermore, a small subset of variables is included in each SPnDE, leading to a
very light model regarding spatial needs and providing fast inference. The experi-
ments’ results over 19 microarray datasets show the competitivity of our proposal
regarding decision tree-based ensembles, both in accuracy and efficiency.

As future works, we plan to study our proposal without the need of dis-
cretizing numerical variables, by considering AnDE models based on the use of
conditional Gaussian networks [14].
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