Abstract
In a parallel network, the Wardrop equilibrium is the optimal distribution of the given total one unit flow across alternative parallel links that minimizes the effective costs of the links which are defined as the sum of the latency at the given flow and the price of the link. Meanwhile, the system optimum is the optimal distribution of the given total one unit flow for which the average effective cost is minimal. In this paper, we study the so-called Wardrop optimal flow that is the Wardrop equilibrium as well as the system optimum of the network. We propose a discrete-time replicator equation on a Wardrop optimal network for which the Nash equilibrium, the Wardrop equilibrium and the system optimum are the same flow distribution in the dynamic network. We also describe the conceptual and functional model of intelligent information system for dynamic traffic flow assignment in transportation networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acemoglu, D., Ozdaglar, A.: Competition and efficiency in congested markets. Math. Oper. Res. 32(1), 1–31 (2007)
Köhler, E., Möhring, R.H., Skutella, M.: Traffic networks and flows over time. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 166–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02094-0_9
Köhler, Skutella, M.: Flows over time with load-dependent transit times. SIAM J. Optim. 15(4), 1185–1202 (2005)
Hamacher, H., Heller, S., Rupp, B.: Flow location (flowloc) problems: dynamic network flows and location models for evacuation planning. Ann. Oper. Res. 207(1), 161–180 (2013)
Chen, Y., Chin, H.: The quickest path problem. Comput. Oper. Res. 17(2), 153–161 (1990)
Boland, N., Kalinowski, T., Waterer, H., Zheng, L.: Scheduling arc maintenance jobs in a network to maximize total flow over time. Discrete Appl. Math. 163, 34–52 (2014)
Peis, B., Skutella, M., Wiese, A.: Packet routing: complexity and algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1_20
Li, K., Yang, S.: Non-identical parallel-machine scheduling research with minimizing total weighted completion times: Models, relaxations and algorithms. Appl. Math. Model. 33(4), 2145–2158 (2009)
Fleischer, L.K.: Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12(1), 18–35 (2001)
Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)
Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)
Nash, J.F.: Equilibrium points in \(n\)-person games. Proc. Nat. Acad. Sci. USA 36(1), 48–49 (1950)
Nash, J.F.: Non-cooperative games. Ann. Math. 54, 287–295 (1951)
Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Amer. Math. Soc. 40, 479–519 (2003)
Sigmund, K.: Evolutionary Game Dynamics. AMS, Providence (2010)
Hofbauer, J., Sigmund, K.: Evolutionary Games and Replicator Dynamics. Cambridge University Press, Cambridge (1998)
Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT (2003)
Saburov, M.: On replicator equations with nonlinear payoff functions defined by the Ricker models. Adv. Pure Appl. Math. 12, 139–156 (2021)
Saburov, M.: On discrete-time replicator equations with nonlinear payoff functions. Dyn. Games Appl. 12, 643–661 (2022)
Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP, The Netherlands (1994)
Acemoglu, D., Srikant, R.: Incentives and prices in communication networks. In: Algorithmic Game Theory. eds. N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani. pp. 107–132, Cambridge University Press (2007)
Carlier, G., Jimenez, C., Santambrogio, F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control. Optim. 47, 1330–1350 (2008)
Beckmann, M., McGuir, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956)
Larsson, T., Patriksson, M.: Equilibrium characterizations of solutions to side constrained traffic equilibrium models. Matematiche (Catania) 49, 249–280 (1994)
Larsson, T., Patriksson, M.: Side constrained traffic equilibrium models: analysis, computation and applications. Transportation Res. 33, 233–264 (1999)
Gavric, D., Bagdasaryan, A.: A fuzzy model for combating misinformation in social network twitter. Journal of Physics: Conf. Ser. 1391, 012050 (2019) [8 pages]
Saburov, M., Saburov, K.: Reaching a nonlinear consensus: polynomial stochastic operators. Int. J. Control Autom. Syst. 12, 1276–1282 (2014)
Saburov, M., Saburov, K.: Reaching a consensus: a discrete nonlinear time-varying case. Int. J. Syst. Sci. 47, 2449–2457 (2016)
Bagdasaryan, A.: Optimal control synthesis for affine nonlinear dynamic systems. Journal of Physics: Conf. Ser. 1391, 012113 (2019) [8 pages]
Bagdasaryan, A.: Optimal control and stability analysis of nonlinear control-affine systems, Journal of Physics: Conf. Ser. 1730, 012076 (2021) [13 pages]
Acknowledgments
The authors wish to thank anonymous referees for useful commens and suggestions toward improvement of the presentation of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix
Definition 4
A sequence \(\left\{ \textbf{x}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{x}^{(1)}:=\textbf{x}\) is called an orbit of the point \(\textbf{x}\in \mathbb {S}^{m-1}\).
Let \(\mathcal {E}_{\varepsilon \textbf{L}_m}(\textbf{y},\textbf{x}):=\varepsilon (\textbf{y},{\textbf{L}_m}(\textbf{x}))=\varepsilon \sum _{i=1}^{m}y_i\ell _i(x_i)\) and \(\mathcal {E}_{\varepsilon \textbf{L}_m}(\textbf{x},\textbf{x}):=\varepsilon (\textbf{x},{\textbf{L}_m}(\textbf{x}))=\varepsilon \sum _{i=1}^{m}x_i\ell _i(x_i)\) for any \(\textbf{x},\textbf{y}\in \mathbb {S}^{m-1}\) and \(\varepsilon \in (-1,0)\).
Definition 5
A flow \(\textbf{x}\) is called a Nash equilibrium if one has \(\mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{x},\textbf{x})\ge \mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{y},\textbf{x})\) for any \(\textbf{y}\in \mathbb {S}^{m-1}\). A flow \(\textbf{x}\) is called a strictly Nash equilibrium if one has \(\mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{x},\textbf{x})> \mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{y},\textbf{x})\) for any \(\textbf{y}\in \mathbb {S}^{m-1}\) with \(\textbf{y}\ne \textbf{x}\).
Definition 6
A point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called a common fixed point of the sequence of the replicator equations \(\{\mathcal {R}_n\}_{n\in \mathbb {N}}\) if one has \(\mathcal {R}_n\left( \textbf{x}\right) =\textbf{x}\) for any \(n\in \mathbb {N}\).
Definition 7
A continuous function \(\varphi :\mathbb {S}^{m-1}\rightarrow \mathbb {R}\) is called a Lyapunov function if the number sequence \(\left\{ \varphi \left( \textbf{x}^{(n)}\right) \right\} _{n\in \mathbb {N}}\) is a bounded monotone sequence for any initial point \(\textbf{x}^{(1)}:=\textbf{x}\in \mathbb {S}^{m-1}\).
Definition 8
A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called stable if for every neighborhood \(U(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) there exists a neighborhood \(V(\textbf{x})\subset U(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) such that an orbit \(\left\{ \textbf{y}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{y}^{(1)}:=\textbf{y}\) of any initial point \(\textbf{y}\in V(\textbf{x})\) remains inside of the neighborhood \(U(\textbf{x})\).
Definition 9
A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called attracting if there exists a neighborhood \(V(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) such that an orbit an orbit \(\left\{ \textbf{y}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{y}^{(1)}:=\textbf{y}\) of any initial point \(\textbf{y}\in V(\textbf{x})\) converges to \(\textbf{x}\). A fixed point \(\textbf{y}\in \mathbb {S}^{m-1}\) is called asymptotically stable if it is both stable and attracting.
Definition 10
A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called asymptotically stable if it is both stable and attracting.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bagdasaryan, A., Kalampakas, A., Saburov, M., Spartalis, S. (2023). Optimal Traffic Flow Distributions on Dynamic Networks. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-34204-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34203-5
Online ISBN: 978-3-031-34204-2
eBook Packages: Computer ScienceComputer Science (R0)