Skip to main content

Optimal Traffic Flow Distributions on Dynamic Networks

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Abstract

In a parallel network, the Wardrop equilibrium is the optimal distribution of the given total one unit flow across alternative parallel links that minimizes the effective costs of the links which are defined as the sum of the latency at the given flow and the price of the link. Meanwhile, the system optimum is the optimal distribution of the given total one unit flow for which the average effective cost is minimal. In this paper, we study the so-called Wardrop optimal flow that is the Wardrop equilibrium as well as the system optimum of the network. We propose a discrete-time replicator equation on a Wardrop optimal network for which the Nash equilibrium, the Wardrop equilibrium and the system optimum are the same flow distribution in the dynamic network. We also describe the conceptual and functional model of intelligent information system for dynamic traffic flow assignment in transportation networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acemoglu, D., Ozdaglar, A.: Competition and efficiency in congested markets. Math. Oper. Res. 32(1), 1–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Köhler, E., Möhring, R.H., Skutella, M.: Traffic networks and flows over time. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 166–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02094-0_9

    Chapter  MATH  Google Scholar 

  3. Köhler, Skutella, M.: Flows over time with load-dependent transit times. SIAM J. Optim. 15(4), 1185–1202 (2005)

    Google Scholar 

  4. Hamacher, H., Heller, S., Rupp, B.: Flow location (flowloc) problems: dynamic network flows and location models for evacuation planning. Ann. Oper. Res. 207(1), 161–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Chin, H.: The quickest path problem. Comput. Oper. Res. 17(2), 153–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boland, N., Kalinowski, T., Waterer, H., Zheng, L.: Scheduling arc maintenance jobs in a network to maximize total flow over time. Discrete Appl. Math. 163, 34–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peis, B., Skutella, M., Wiese, A.: Packet routing: complexity and algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1_20

    Chapter  MATH  Google Scholar 

  8. Li, K., Yang, S.: Non-identical parallel-machine scheduling research with minimizing total weighted completion times: Models, relaxations and algorithms. Appl. Math. Model. 33(4), 2145–2158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fleischer, L.K.: Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12(1), 18–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nash, J.F.: Equilibrium points in \(n\)-person games. Proc. Nat. Acad. Sci. USA 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 287–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Amer. Math. Soc. 40, 479–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sigmund, K.: Evolutionary Game Dynamics. AMS, Providence (2010)

    MATH  Google Scholar 

  16. Hofbauer, J., Sigmund, K.: Evolutionary Games and Replicator Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT (2003)

    Google Scholar 

  18. Saburov, M.: On replicator equations with nonlinear payoff functions defined by the Ricker models. Adv. Pure Appl. Math. 12, 139–156 (2021)

    Article  Google Scholar 

  19. Saburov, M.: On discrete-time replicator equations with nonlinear payoff functions. Dyn. Games Appl. 12, 643–661 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP, The Netherlands (1994)

    MATH  Google Scholar 

  21. Acemoglu, D., Srikant, R.: Incentives and prices in communication networks. In: Algorithmic Game Theory. eds. N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani. pp. 107–132, Cambridge University Press (2007)

    Google Scholar 

  22. Carlier, G., Jimenez, C., Santambrogio, F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control. Optim. 47, 1330–1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beckmann, M., McGuir, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  24. Larsson, T., Patriksson, M.: Equilibrium characterizations of solutions to side constrained traffic equilibrium models. Matematiche (Catania) 49, 249–280 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Larsson, T., Patriksson, M.: Side constrained traffic equilibrium models: analysis, computation and applications. Transportation Res. 33, 233–264 (1999)

    Article  Google Scholar 

  26. Gavric, D., Bagdasaryan, A.: A fuzzy model for combating misinformation in social network twitter. Journal of Physics: Conf. Ser. 1391, 012050 (2019) [8 pages]

    Google Scholar 

  27. Saburov, M., Saburov, K.: Reaching a nonlinear consensus: polynomial stochastic operators. Int. J. Control Autom. Syst. 12, 1276–1282 (2014)

    Article  MATH  Google Scholar 

  28. Saburov, M., Saburov, K.: Reaching a consensus: a discrete nonlinear time-varying case. Int. J. Syst. Sci. 47, 2449–2457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bagdasaryan, A.: Optimal control synthesis for affine nonlinear dynamic systems. Journal of Physics: Conf. Ser. 1391, 012113 (2019) [8 pages]

    Google Scholar 

  30. Bagdasaryan, A.: Optimal control and stability analysis of nonlinear control-affine systems, Journal of Physics: Conf. Ser. 1730, 012076 (2021) [13 pages]

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank anonymous referees for useful commens and suggestions toward improvement of the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Bagdasaryan .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Definition 4

A sequence \(\left\{ \textbf{x}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{x}^{(1)}:=\textbf{x}\) is called an orbit of the point \(\textbf{x}\in \mathbb {S}^{m-1}\).

Let \(\mathcal {E}_{\varepsilon \textbf{L}_m}(\textbf{y},\textbf{x}):=\varepsilon (\textbf{y},{\textbf{L}_m}(\textbf{x}))=\varepsilon \sum _{i=1}^{m}y_i\ell _i(x_i)\) and \(\mathcal {E}_{\varepsilon \textbf{L}_m}(\textbf{x},\textbf{x}):=\varepsilon (\textbf{x},{\textbf{L}_m}(\textbf{x}))=\varepsilon \sum _{i=1}^{m}x_i\ell _i(x_i)\) for any \(\textbf{x},\textbf{y}\in \mathbb {S}^{m-1}\) and \(\varepsilon \in (-1,0)\).

Definition 5

A flow \(\textbf{x}\) is called a Nash equilibrium if one has \(\mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{x},\textbf{x})\ge \mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{y},\textbf{x})\) for any \(\textbf{y}\in \mathbb {S}^{m-1}\). A flow \(\textbf{x}\) is called a strictly Nash equilibrium if one has \(\mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{x},\textbf{x})> \mathcal {E}_{\varepsilon \textbf{L}_n}(\textbf{y},\textbf{x})\) for any \(\textbf{y}\in \mathbb {S}^{m-1}\) with \(\textbf{y}\ne \textbf{x}\).

Definition 6

A point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called a common fixed point of the sequence of the replicator equations \(\{\mathcal {R}_n\}_{n\in \mathbb {N}}\) if one has \(\mathcal {R}_n\left( \textbf{x}\right) =\textbf{x}\) for any \(n\in \mathbb {N}\).

Definition 7

A continuous function \(\varphi :\mathbb {S}^{m-1}\rightarrow \mathbb {R}\) is called a Lyapunov function if the number sequence \(\left\{ \varphi \left( \textbf{x}^{(n)}\right) \right\} _{n\in \mathbb {N}}\) is a bounded monotone sequence for any initial point \(\textbf{x}^{(1)}:=\textbf{x}\in \mathbb {S}^{m-1}\).

Definition 8

A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called stable if for every neighborhood \(U(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) there exists a neighborhood \(V(\textbf{x})\subset U(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) such that an orbit \(\left\{ \textbf{y}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{y}^{(1)}:=\textbf{y}\) of any initial point \(\textbf{y}\in V(\textbf{x})\) remains inside of the neighborhood \(U(\textbf{x})\).

Definition 9

A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called attracting if there exists a neighborhood \(V(\textbf{x})\subset \mathbb {S}^{m-1}\) of \(\textbf{x}\) such that an orbit an orbit \(\left\{ \textbf{y}^{(n)}\right\} _{n\in \mathbb {N}}\) with \(\textbf{y}^{(1)}:=\textbf{y}\) of any initial point \(\textbf{y}\in V(\textbf{x})\) converges to \(\textbf{x}\). A fixed point \(\textbf{y}\in \mathbb {S}^{m-1}\) is called asymptotically stable if it is both stable and attracting.

Definition 10

A common fixed point \(\textbf{x}\in \mathbb {S}^{m-1}\) is called asymptotically stable if it is both stable and attracting.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagdasaryan, A., Kalampakas, A., Saburov, M., Spartalis, S. (2023). Optimal Traffic Flow Distributions on Dynamic Networks. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics