Skip to main content

Computational Ethology: Short Review of Current Sensors and Artificial Intelligence Based Methods

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1826))

  • 702 Accesses

Abstract

Computational Ethology provides automated and precise measurement of animal behavior. Artificial Intelligence (AI) techniques have also introduced the enhanced capabilities to interpret experimental data in order to extract accurate ethograms allowing the comparison of animal models with high discriminative power. In this short review we introduce the most recent software tools that employ AI tools for this endeavor, including the popular deep learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, R., Balazs, P., Marconi, M.A., Nicolakis, D., Zala, S.M., Penn, D.J.: Capturing the songs of mice with an improved detection and classification method for ultrasonic vocalizations (bootsnap). PLoS Comput. Biol. 18(5), e1010049 (2022). https://doi.org/10.1371/journal.pcbi.1010049

    Article  Google Scholar 

  2. Ajuwon, V., Cruz, B.F., Carriço, P., et al.: GoFish: a low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav. Res. (2023). https://doi.org/10.3758/s13428-022-02049-2

  3. Akiti, K., et al.: Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron 110(22), 3789–3804 (2022). https://doi.org/10.1016/j.neuron.2022.08.022

    Article  Google Scholar 

  4. Aldoumani, N., Meydan, T., Dillingham, C.M., Erichsen, J.T.: Enhanced tracking system based on micro inertial measurements unit to measure sensorimotor responses in pigeons. IEEE Sens. J. 16(24), 8847–8853 (2016). https://doi.org/10.1109/JSEN.2016.2586540

    Article  Google Scholar 

  5. Anderson, D., Perona, P.: Toward a science of computational ethology. Neuron 84(1), 18–31 (2014). https://doi.org/10.1016/j.neuron.2014.09.005

  6. Arvin, S., Rasmussen, R.N., Yonehara, K.: Eyeloop: An open-source system for high-speed, closed-loop eye-tracking. Front. Cell. Neurosci. 15, 779628 (2021). https://doi.org/10.3389/fncel.2021.779628

    Article  Google Scholar 

  7. Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., Zimmermann, J.: Automated markerless pose estimation in freely moving macaques with openmonkeystudio. Nat. Commun. 11(1), 4560 (2020). https://doi.org/10.1038/s41467-020-18441-5

    Article  Google Scholar 

  8. Berman, G., Choi, D., Bialek, W., Shaevitz, J.: Mapping the stereotyped behaviour of freely moving fruit flies. J. Royal Soc. Interface 11(99) (2014). https://doi.org/10.1098/rsif.2014.0672

  9. Bohnslav, J., et al.: Deepethogram, a machine learning pipeline for supervised behavior classification from raw pixels. eLife 10 (2021). https://doi.org/10.7554/eLife.63377

  10. Bova, A., Kernodle, K., Mulligan, K., Leventhal, D.: Automated rat single-pellet reaching with 3-dimensional reconstruction of paw and digit trajectories. J. Vis. Exp. 2019(149) (2019). https://doi.org/10.3791/59979

  11. Carreño-Munoz, M., et al.: Potential involvement of impaired bk ca channel function in sensory defensiveness and some behavioral disturbances induced by unfamiliar environment in a mouse model of fragile x syndrome. Neuropsychopharmacology 43(3), 492–502 (2018). https://doi.org/10.1038/npp.2017.149

  12. Carreño-Muñoz, M., et al.: Detecting fine and elaborate movements with piezo sensors provides non-invasive access to overlooked behavioral components. Neuropsychopharmacology 47(4), 933–943 (2022). https://doi.org/10.1038/s41386-021-01217-w

  13. Chaput, S.L., Burggren, W.W., Hurd, P.L., Hamilton, T.J.: Zebrafish (danio rerio) shoaling in light and dark conditions involves a complex interplay between vision and lateral line. Behav. Brain Res. 439, 114228 (2023)

    Article  Google Scholar 

  14. Chen, C.P.J., Morota, G., Lee, K., Zhang, Z., Cheng, H.: Vtag: a semi-supervised pipeline for tracking pig activity with a single top-view camera. J. Animal Sci. 100 (2022)

    Google Scholar 

  15. Chen, G., Li, C., Guo, Y., Shu, H., Cao, Z., Xu, B.: Recognition of cattle’s feeding behaviors using noseband pressure sensor with machine learning. Front. Veterinary Sci. 9, 822621 (2022)

    Article  Google Scholar 

  16. Choi, S., et al.: Parallel ascending spinal pathways for affective touch and pain. Nature 587(7833), 258–263 (2020). https://doi.org/10.1038/s41586-020-2860-1

  17. Clemensson, E.K.H., Abbaszadeh, M., Fanni, S., Espa, E., Cenci, M.A.: Tracking rats in operant conditioning chambers using a versatile homemade video camera and deeplabcut. J. Vis. Exp. (160) (2020). https://doi.org/10.3791/61409

  18. Coffey, K., Marx, R., Neumaier, J.: Deepsqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44(5), 859–868 (2019). https://doi.org/10.1038/s41386-018-0303-6

  19. Cristancho, A.G., Tulina, N., Brown, A.G., Anton, L., Barila, G., Elovitz, M.A.: Intrauterine inflammation leads to select sex- and age-specific behavior and molecular differences in mice. Int. J. Molec. Sci. 24 (2022)

    Google Scholar 

  20. Datta, S., Anderson, D., Branson, K., Perona, P., Leifer, A.: Computational neuroethology: A call to action. Neuron 104(1), 11–24 (2019). https://doi.org/10.1016/j.neuron.2019.09.038

  21. De Almeida, T., Spinelli, B., Hypolito Lima, R., Gonzalez, M., Rodrigues, A.: Pyrat: An open-source python library for animal behavior analysis. Front. Neurosci. 16 (2022). https://doi.org/10.3389/fnins.2022.779106

  22. Doornweerd, J.E., et al.: Passive radio frequency identification and video tracking for the determination of location and movement of broilers. Poult. Sci. 102, 102412 (2022)

    Article  Google Scholar 

  23. Drazan, J.F., Phillips, W.T., Seethapathi, N., Hullfish, T.J., Baxter, J.R.: Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. J. Biomech. 125, 110547 (2021). https://doi.org/10.1016/j.jbiomech.2021.110547

    Article  Google Scholar 

  24. Feng, J., Xiao, X.: Multiobject tracking of wildlife in videos using few-shot learning. Animals: Open Access J. MDPI 12 (2022)

    Google Scholar 

  25. Fujiwara, T., Brotas, M., Chiappe, M.: Walking strides direct rapid and flexible recruitment of visual circuits for course control in drosophila. Neuron 110(13), 2124-2138.e8 (2022). https://doi.org/10.1016/j.neuron.2022.04.008

  26. Gabriel, C.J., et al.: Behaviordepot is a simple, flexible tool for automated behavioral detection based on markerless pose tracking. Elife 11 (2022). https://doi.org/10.7554/eLife.74314

  27. Gaidica, M., Dantzer, B.: An implantable neurophysiology platform: Broadening research capabilities in free-living and non-traditional animals. Front. Neural Circ. 16, 940989 (2022)

    Article  Google Scholar 

  28. Geelen, J.E., Branco, M.P., Ramsey, N.F., van der Helm, F.C.T., Mugge, W., Schouten, A.C.: Markerless motion capture: Ml-mocap, a low-cost modular multi-camera setup. Annu. Int. Conf. IEEE. Eng. Med. Biol. Soc. 2021, 4859–4862 (2021). https://doi.org/10.1109/EMBC46164.2021.9629749

    Article  Google Scholar 

  29. Gerós, A., Magalhães, A., Aguiar, P.: Improved 3d tracking and automated classification of rodents’ behavioral activity using depth-sensing cameras. Behav. Res. Methods 52(5), 2156–2167 (2020). https://doi.org/10.3758/s13428-020-01381-9

  30. Gomez-Marin, A.: A clash of umwelts: Anthropomorphism in behavioral neuroscience. Behav. Brain Sci. 42, e229 (2019). https://doi.org/10.1017/S0140525X19001237

    Article  Google Scholar 

  31. Goncharow, P.N., Beaudette, S.M.: Assessing time-varying lumbar flexion-extension kinematics using automated pose estimation. J. Appl. Biomech. 38(5), 355–360 (2022). https://doi.org/10.1123/jab.2022-0041

    Article  Google Scholar 

  32. Graving, J., et al.: Deepposekit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife 8 (2019). https://doi.org/10.7554/eLife.47994

  33. Henriques, S., et al.: Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11(1) (2020). https://doi.org/10.1038/s41467-020-18049-9

  34. Hood, K.E., Long, E., Navarro, E., Hurley, L.M.: Playback of broadband vocalizations of female mice suppresses male ultrasonic calls. PLoS ONE 18, e0273742 (2023)

    Article  Google Scholar 

  35. Hrvatin, S., et al.: Neurons that regulate mouse torpor. Nature 583(7814), 115–121 (2020). https://doi.org/10.1038/s41586-020-2387-5

  36. Hsu, A., Yttri, E.: B-soid, an open-source unsupervised algorithm for identification and fast prediction of behaviors. Nat. Commun. 12(1) (2021). https://doi.org/10.1038/s41467-021-25420-x

  37. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected convolutional networks, pp. 2261–2269 (January 2017). https://doi.org/10.1109/CVPR.2017.243

  38. Hurley, M., et al.: Adolescent female rats recovered from the activity-based anorexia display blunted hedonic responding. Int. J. Eating Disorders 55(8), 1042–1053 (2022). https://doi.org/10.1002/eat.23752

  39. Jia, Y., et al.: Selfee, self-supervised features extraction of animal behaviors. eLife 11 (2022). https://doi.org/10.7554/eLife.76218

  40. Jin, T., Duan, F.: Rat behavior observation system based on transfer learning. IEEE Access 7, 62152–62162 (2019). https://doi.org/10.1109/ACCESS.2019.2916339

  41. Kabra, M., Robie, A., Rivera-Alba, M., Branson, S., Branson, K.: Jaaba: Interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10(1), 64–67 (2013). https://doi.org/10.1038/nmeth.2281

  42. Karashchuk, P., et al.: Anipose: A toolkit for robust markerless 3d pose estimation. Cell Rep. 36(13), 109730 (2021). https://doi.org/10.1016/j.celrep.2021.109730

    Article  Google Scholar 

  43. Kempermann, G., et al.: The individuality paradigm: Automated longitudinal activity tracking of large cohorts of genetically identical mice in an enriched environment. Neurobiol. Dis. 175, 105916 (2022)

    Article  Google Scholar 

  44. Kirkpatrick, N.J., Butera, R.J., Chang, Y.H.: Deeplabcut increases markerless tracking efficiency in x-ray video analysis of rodent locomotion. J. Exp. Biol. 225(16) (2022). https://doi.org/10.1242/jeb.244540

  45. Kume, M., Yoshikawa, Y., Tanaka, T., Watanabe, S., Mitamura, H., Yamashita, Y.: Water temperature and precipitation stimulate small-sized japanese eels to climb a low-height vertical weir. PLoS ONE 17, e0279617 (2022)

    Article  Google Scholar 

  46. Kuramoto, E., et al.: Development of a system to analyze oral frailty associated with alzheimer’s disease using a mouse model. Front. Aging Neurosci. 14 (2022). https://doi.org/10.3389/fnagi.2022.935033

  47. Lauer, J., et al.: Multi-animal pose estimation, identification and tracking with deeplabcut. Nat. Methods 19(4), 496–504 (2022). https://doi.org/10.1038/s41592-022-01443-0

    Article  Google Scholar 

  48. Li, J., Kells, P., Osgood, A., Gautam, S., Shew, W.: Collapse of complexity of brain and body activity due to excessive inhibition and mecp2 disruption. Proc. National Acad. Sci. United States Am. 118(43) (2021). https://doi.org/10.1073/pnas.2106378118

  49. Li, Y., et al.: A novel open-source raspberry pi-based behavioral testing in zebrafish. PLoS ONE 17, e0279550 (2022)

    Article  Google Scholar 

  50. Lonini, L., et al.: Video-based pose estimation for gait analysis in stroke survivors during clinical assessments: A proof-of-concept study. Digit Biomark 6(1), 9–18 (2022). https://doi.org/10.1159/000520732

    Article  Google Scholar 

  51. Lopes, G., Monteiro, P.: New open-source tools: Using bonsai for behavioral tracking and closed-loop experiments. Front. Behav. Neurosci. 15 (2021). https://doi.org/10.3389/fnbeh.2021.647640

  52. Luxem, K., et al.: Identifying behavioral structure from deep variational embeddings of animal motion. Communications Biology 5(1) (2022). https://doi.org/10.1038/s42003-022-04080-7

  53. Magaju, D., Montgomery, J., Franklin, P., Baker, C., Friedrich, H.: Machine learning based assessment of small-bodied fish tracking to evaluate spoiler baffle fish passage design. J. Environ. Manage. 325(Pt A), 116507 (2023). https://doi.org/10.1016/j.jenvman.2022.116507

    Article  Google Scholar 

  54. Marcus, A.D., Achanta, S., Jordt, S.E.: Protocol for non-invasive assessment of spontaneous movements of group-housed animals using remote video monitoring. STAR Protocols 3, 101326 (2022)

    Article  Google Scholar 

  55. Marks, M., et al.: Deep-learning based identification, tracking, pose estimation, and behavior classification of interacting primates and mice in complex environments. Nat. Mach. Intell. 4, 331–340 (2022)

    Article  Google Scholar 

  56. Marshall, J.D., Li, T., Wu, J.H., Dunn, T.W.: Leaving flatland: Advances in 3d behavioral measurement. Curr. Opin. Neurobiol. 73, 102522 (2022)

    Article  Google Scholar 

  57. Mathis, A., et al.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018). https://doi.org/10.1038/s41593-018-0209-y

  58. Narayanan, D.Z., Takahashi, D.Y., Kelly, L.M., Hlavaty, S.I., Huang, J., Ghazanfar, A.A.: Prenatal development of neonatal vocalizations. eLife 11 (2022)

    Google Scholar 

  59. Needham, L., et al.: The accuracy of several pose estimation methods for 3d joint centre localisation. Sci. Rep. 11(1), 20673 (2021). https://doi.org/10.1038/s41598-021-00212-x

    Article  MathSciNet  Google Scholar 

  60. Neunuebel, J., Taylor, A., Arthur, B., Roian Egnor, S.: Female mice ultrasonically interact with males during courtship displays. eLife 4, 1–24 (2015). https://doi.org/10.7554/eLife.06203

  61. Parker, P.R.L., et al.: Distance estimation from monocular cues in an ethological visuomotor task. Elife 11 (2022). https://doi.org/10.7554/eLife.74708,https://doi.org/10.7554%2Felife.74708

  62. Parmiani, P., Lucchetti, C., Bonifazzi, C., Franchi, G.: A kinematic study of skilled reaching movement in rat. J. Neurosci. Methods 328, 108404 (2019). https://doi.org/10.1016/j.jneumeth.2019.108404

    Article  Google Scholar 

  63. Pereira, T.D., et al.: Sleap: A deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022)

    Article  Google Scholar 

  64. Pereira, T., et al.: Fast animal pose estimation using deep neural networks. Nature Methods 16(1), 117–125 (2019). https://doi.org/10.1038/s41592-018-0234-5

  65. Pons, P., Jaen, J., Catala, A.: Assessing machine learning classifiers for the detection of animals’ behavior using depth-based tracking. Expert Systems with Applications 86, 235–246 (2017). https://doi.org/10.1016/j.eswa.2017.05.063, https://www.sciencedirect.com/science/article/pii/S0957417417303913

  66. Popov, A., et al.: A high-fat diet changes astrocytic metabolism to promote synaptic plasticity and behavior. Acta Physiologica 236(1) (2022). https://doi.org/10.1111/apha.13847

  67. Rodrigues, D., et al.: Chronic stress causes striatal disinhibition mediated by som-interneurons in male mice. Nat. Commun. 13(1) (2022). https://doi.org/10.1038/s41467-022-35028-4

  68. Sangarapillai, N., Wöhr, M., Schwarting, R.K.W.: Appetitive 50 khz calls in a pavlovian conditioned approach task in cacna1c haploinsufficient rats. Phys. Behav. 250, 113795 (2022)

    Article  Google Scholar 

  69. Segalin, C., et al.: The mouse action recognition system (mars) software pipeline for automated analysis of social behaviors in mice. eLife 10 (2021). https://doi.org/10.7554/eLife.63720

  70. Sturman, O., et al.: Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45(11), 1942–1952 (2020). https://doi.org/10.1038/s41386-020-0776-y

    Article  Google Scholar 

  71. Su, F., et al.: Noninvasive tracking of every individual in unmarked mouse groups using multi-camera fusion and deep learning. Neurosci. Bull. (2022)

    Google Scholar 

  72. Suryanto, M.E., et al.: Using deeplabcut as a real-time and markerless tool for cardiac physiology assessment in zebrafish. Biology (Basel) 11(8) (2022). https://doi.org/10.3390/biology11081243

  73. Takenaka, M., et al.: Behavior of snow monkeys hunting fish to survive winter. Sci. Rep. 12, 20324 (2022)

    Article  Google Scholar 

  74. Tarcsay, G., Boublil, B., Ewell, L.: Low-cost platform for multianimal chronic local field potential video monitoring with graphical user interface (gui) for seizure detection and behavioral scoring. eNeuro 9(5) (2022). https://doi.org/10.1523/ENEURO.0283-22.2022

  75. Venkatraman, S., Jin, X., Costa, R., Carmena, J.: Investigating neural correlates of behavior in freely behaving rodents using inertial sensors. Journal of Neurophysiology 104(1), 569–575 (2010). https://doi.org/10.1152/jn.00121.2010

  76. Vester, H., Hammerschmidt, K., Timme, M., Hallerberg, S.: Quantifying group specificity of animal vocalizations without specific sender information. Phys. Rev. E 93(2), 022138 (2016). https://doi.org/10.1103/PhysRevE.93.022138

    Article  Google Scholar 

  77. Vonstad, E.K., Su, X., Vereijken, B., Bach, K., Nilsen, J.H.: Comparison of a deep learning-based pose estimation system to marker-based and kinect systems in exergaming for balance training. Sensors (Basel) 20(23) (2020). https://doi.org/10.3390/s20236940

  78. Wang, J., Karbasi, P., Wang, L., Meeks, J.P.: A layered, hybrid machine learning analytic workflow for mouse risk assessment behavior. eNeuro (2022). https://doi.org/10.1523/ENEURO.0335-22.2022

  79. Weber, R.Z., Mulders, G., Kaiser, J., Tackenberg, C., Rust, R.: Deep learning-based behavioral profiling of rodent stroke recovery. BMC Biol. 20(1), 232 (2022). https://doi.org/10.1186/s12915-022-01434-9

    Article  Google Scholar 

  80. Whiteway, M.R.: Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS Comput. Biol. 17(9), e1009439 (2021). https://doi.org/10.1371/journal.pcbi.1009439

    Article  Google Scholar 

  81. Wrench, A., Balch-Tomes, J.: Beyond the edge: Markerless pose estimation of speech articulators from ultrasound and camera images using deeplabcut. Sensors (Basel) 22(3) (2022). https://doi.org/10.3390/s22031133

Download references

Acknowledgments

This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P, and grant IT1284-19 as university research group of excellence from the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Aguilar-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar-Moreno, M., Graña, M. (2023). Computational Ethology: Short Review of Current Sensors and Artificial Intelligence Based Methods. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics