Skip to main content

Strain Prediction of a Bridge Deploying Autoregressive Models with ARIMA and Machine Learning Algorithms

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Abstract

Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. In this research, the authors present an approach based on nineteen (19) Machine Learning (ML) techniques for the prediction of the future strain values in a Dutch Highway Bridge depending on previous measurements of the strain. For the evaluation of the algorithms the indices Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and R square (R2) were chosen and Fast Fourier Transform (FFT) and Averaged Standardized Values were chosen for the time series pre-processing. The results are extremely promising, with almost every algorithm to predict the fluctuations of strain values and the indexes are quite satisfactory. The results ensure that those who are responsible for the maintenance of the bridge or for its repairs, could use these models to determine which time that should take action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fallahian, M., Khoshnoudian, F., Meruane, V.: Ensemble classification method for structural damage assessment under varying temperature. Struct. Health Monit. 17(4), 747–762 (2018)

    Article  Google Scholar 

  2. Cunha, A., Caetano, E., Magalhes, F., Moutinho, C.: Recent perspectives in dynamic testing and monitoring of bridges. Struct. Control Health Monit. 20, 853877 (2013)

    Article  Google Scholar 

  3. Li, H., Li, S., Ou, J., Li, H.: Modal identification of bridges under varying environmental conditions: Temperature and wind effects. Struct. Control Health Monit. 17, 495512 (2010)

    Google Scholar 

  4. Xia, Y., Chen, B., Zhou, X.Q., Xu, Y.L.: Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior. Struct. Control. Health Monit. 20(4), 560–575 (2013). https://doi.org/10.1002/stc.515

    Article  Google Scholar 

  5. Miao, S., Koenders, E.A.B., Knobbe, A., Automatic baseline correction of strain gauge signals. Struct. Control Health Monit. 22(1), 36–49 (2014). ISSN 1545-2263

    Google Scholar 

  6. Vespier, U., Nijssen, S., Knobbe, A.: Mining characteristic multi-scale motifs in sensor-based time series. In: Proceedings of the International Conference on Information and Knowledge Management, pp. 2393–2398 (2013). https://doi.org/10.1145/2505515.2505620

  7. Miao, S., Vespier, U., Vanschoren, J., Knobbe, A., Cachucho, R.: Modeling Sensor Dependencies between Multiple Sensor Types (2013)

    Google Scholar 

  8. Vespier, U., Knobbe, A.J., Nijssen, S., Vanschoren, J.: MDL-based identification of relevant temporal scales in time series (2012)

    Google Scholar 

  9. Knobbe, A., et al.: InfraWatch: Data Management of Large Systems for Monitoring Infrastructural Performance. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.) IDA 2010. LNCS, vol. 6065, pp. 91–102. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13062-5_10

    Chapter  Google Scholar 

  10. Farrar, C., Hemez, F., Shunk, D., Stinemates, D., Nadler, B.: A review of structural health monitoring literature, pp. 1996–2001 (2004)

    Google Scholar 

  11. Kim, C.-Y., Jung, D.-S., Kim, N.-S., Kwon, S.-D., Feng, M.: Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration. Earthq. Eng. Eng. Vib. 2, 109–115 (2003). https://doi.org/10.1007/BF02857543

    Article  Google Scholar 

  12. Witkin, A.P.: Scale-Space Filtering. In: IJCAI (1983)

    Google Scholar 

  13. Miao, S., Knobbe, A., Vanschoren, J., Vespier, U., Chen, X.: A range of data mining techniques to correlate multiple sensor types (2011)

    Google Scholar 

  14. Vespier, U., et al.: Traffic events modeling for structural health monitoring. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 376–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24800-9_35

    Chapter  Google Scholar 

  15. Knobbe, A.J., Koopman, A., Kok, J.N., Obladen, B., Bosma, C., Koenders, E.: Large data stream processing for bridge management systems (2010)

    Google Scholar 

  16. Li, X., Yu, W., Villegas, S.: Structural health monitoring of building structures with online data mining methods. IEEE Syst. J. 10, 1–10 (2015). https://doi.org/10.1109/JSYST.2015.2481380

    Article  Google Scholar 

  17. Koopman, A., Knobbe, A., Meeng, M.: Pattern selection problems in multivariate time-series using equation discovery. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010). https://doi.org/10.1145/1816112.1816122

  18. Lynch, J.P., Loh, K.J.: A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vibr. Dig. 38(2), 91–130 (2006)

    Article  Google Scholar 

  19. Liu, S.-C., Tomizuka, M., Ulsoy, A.: Strategic issues in sensors and smart structures. Struct. Control. Health Monit. 13, 946–957 (2006). https://doi.org/10.1002/stc.88

    Article  Google Scholar 

  20. Knobbe, A., Koopman, A., Kok, J.N., Obladen, B., Bosma, C., Galenkamp, H.: The role of fielded applications in machine learning education. In: Proceedings 20th Belgian Dutch Conference on Machine Learning (BENELEARN) (2010)

    Google Scholar 

  21. Brigham, E.O.: The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc. (1988)

    Google Scholar 

  22. Zhang, Z.: Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans. Biomed. Eng. 62(8), 1902–1910 (2015)

    Article  Google Scholar 

  23. Nussbaumer, H.J.: The fast Fourier transform. In: Fast Fourier Transform and Convolution Algorithms, pp. 80–111. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-81897-4_4

  24. Rhif, M., Ben Abbes, A., Farah, I.R., Martínez, B., Sang, Y.: Wavelet transform application for/in non-stationary time-series analysis: a review. Appl. Sci. 9(7), 1345 (2019)

    Google Scholar 

  25. Baum, C.: KPSS: Stata module to compute Kwiatkowski-Phillips-Schmidt-Shin test for stationarity (2018)

    Google Scholar 

  26. Lopez, J.H.: The power of the ADF test. Econ. Lett. 57(1), 5–10 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paparoditis, E., Politis, D.N.: The asymptotic size and power of the augmented Dickey-Fuller test for a unit root. Economet. Rev. 37(9), 955–973 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheung, Y.W., Lai, K.S.: Bandwidth selection, prewhitening, and the power of the Phillips-Perron test. Economet. Theor. 13(5), 679–691 (1997)

    Article  MathSciNet  Google Scholar 

  29. Boeva, V., Tsiporkova, E.: A multi-purpose time series data standardization method. In: Sgurev, V., Hadjiski, M., Kacprzyk, J. (eds.) Intelligent Systems: From Theory to Practice. Studies in Computational Intelligence, vol. 299, pp. 445–460. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13428-9_22

  30. Batyrshin, I.: Constructing time series shape association measures: Minkowski distance and data standardization. In: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 204–212. IEEE, September 2013

    Google Scholar 

  31. Peter, Ď., Silvia, P.: ARIMA vs. ARIMAX–which approach is better to analyze and forecast macroeconomic time series. In: Proceedings of 30th International Conference Mathematical Methods in Economics, vol. 2, pp. 136–140, September 2012

    Google Scholar 

  32. King, M.L.: Testing for autocorrelation in linear regression models: a survey. In: Specification Analysis in the Linear Model, pp. 19–73. Routledge (2018)

    Google Scholar 

  33. Chethana, C.: Tree based predictive modelling for prediction of the accuracy of diabetics. In: 2021 International Conference on Intelligent Technologies (CONIT), pp. 1–6. IEEE, June2021

    Google Scholar 

  34. Patel, H.H., Prajapati, P.: Study and analysis of decision tree based classification algorithms. Int. J. Comput. Sci. Eng. 6(10), 74–78 (2018)

    Google Scholar 

  35. Psathas, A. P., Papaleonidas, A., Iliadis, L.: Machine learning modeling of human activity using PPG signals. In: International Conference on Computational Collective Intelligence, pp. 543–557. Springer, Cham, November 2020

    Google Scholar 

  36. Kalita, D.J., Singh, V.P., Kumar, V.: A survey on svm hyper-parameters optimization techniques. In: Shukla, R.K., Agrawal, J., Sharma, S., Chaudhari, N.S., Shukla, K.K. (eds.) Social Networking and Computational Intelligence. LNNS, vol. 100, pp. 243–256. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2071-6_20

    Chapter  Google Scholar 

  37. Xiao, J., Yu, L., Bai, Y.: Survey of the selection of kernels and hyper-parameters in support vector regression. J. Southwest Jiaotong Univ. 43(3), 297–303 (2008)

    MATH  Google Scholar 

  38. Dudley, R.M.: Sample functions of the Gaussian process. Selected Works of RM Dudley, pp. 187–224 (2010)

    Google Scholar 

  39. Quinonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Swiler, L.P., Gulian, M., Frankel, A.L., Safta, C., Jakeman, J.D.: A survey of constrained Gaussian process regression: approaches and implementation challenges. J. Mach. Learn. Model. Comput. 1(2), 119–156 (2020)

    Google Scholar 

  41. Ganjisaffar, Y., Caruana, R., Lopes, C.V.: Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 85–94, July 2011

    Google Scholar 

  42. Israeli, O.: A shapley-based decomposition of the R-square of a linear regression. J. Econ. Inequality 5(2), 199–212 (2007)

    Article  Google Scholar 

  43. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  44. Ketkar, N.: Introduction to Keras. In: Deep learning with Python, pp. 97–111. Apress, Berkeley, CA (2017)

    Google Scholar 

  45. Dillon, J.V., et al.: Tensorflow distributions (2017). arXiv preprint arXiv:1711.10604

  46. Papaleonidas, A., Psathas, A.P., Iliadis, L.: High accuracy human activity recognition using machine learning and wearable devices’ raw signals. J. Inf. Telecommun., 1–17 (2021)

    Google Scholar 

  47. Gaitanidou, E., Bellini, E., Ferreira, P.: European Resilience Management Guidlines (2018)

    Google Scholar 

  48. Gkoumas, K., Marques Dos Santos, F.L., Van Balen, M., Tsakalidis, A., Ortega Hortelano, A., Pekár, F.: Research & innovation in bridge maintenance, inspection & monitoring. Publication Office of the EU (2019)

    Google Scholar 

  49. Haq, G., et al.: Research & innovation in bridge maintenance, inspection & monitoring: a European perspective based on the Transport Research & Innovation Monitoring & Information System (TRIMIS): study (2019)

    Google Scholar 

  50. Nicodème, C., Diamandouros, K., Diez, J., Durso, C., Arampidou, K., Nuri, A.K.: Road statistics yearbook (2017)

    Google Scholar 

  51. Eurocodes: Building the future-The European Commission website on the Eurocodes 631 (2019). https://eurocodes.jrc.ec.europa.eu/showpage.php?id=631. Accessed 8 Mar 2023

  52. Tsionis, G.: Seismic resilience: concept, metrics & integration with other hazards. Joint Research Centre, Public. Office of the EU, Luxembourg (2014). https://doi.org/10.2788/713724

  53. Achillopoulou, D.V., Mitoulis, S.A., Argyroudis, S.A., Wang, Y.: Monitoring of transport infrastructures exposed to multiple hazards: a roadmap for building resilience. Sci. Total Environ. 746, 141001 (2020)

    Article  Google Scholar 

  54. Argyroudis, S.A., et al.: Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manage. 35, 100387 (2022)

    Google Scholar 

  55. Li, X., Yu, W., Villegas, S.: Structural health monitoring of building structures with online data mining methods. IEEE Syst. J. 10, 1–10 (2015)

    Google Scholar 

  56. Wegenwiki.nl: Hollandse Brug-Wegenwiki (2022). https://cutt.ly/uFnOV4r. Accessed 8 Mar 2023

  57. Achillopoulou, D.V., Stamataki, N.K., Psathas, A.P., Iliadis, L., Karabinis, A.I.: Quantification of resilience of bridges using artificial intelligence (AI) algorithms & structural health monitoring (SHM). In: IABSE Congress Nanjing 2022 Bridges and Structures: Connection, Integration and Harmonization, Data, 21–23 September 2022 (2022)

    Google Scholar 

  58. Veerman, R.: Deflections & natural frequencies as parameters for structural health monitoring: the effect of fatigue and corrosion on the deflections and the natural frequencies of reinforced concrete beams. Repository.tudelft.nl (2017)

    Google Scholar 

  59. Psathas, A.P., et al. Autoregressive deep learning models for bridge strain prediction. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds.) Proceedings of the 23rd International Conference on Engineering Applications of Neural Networks. EAAAI/EANN 2022, Chersonissos, Crete, Greece, 17–20 June 2022, pp. 150–164. Springer, Cham, June 2022. https://doi.org/10.1007/978-3-031-08223-8_13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Panagiotis Psathas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Iliadis, L., Papaleonidas, A. (2023). Strain Prediction of a Bridge Deploying Autoregressive Models with ARIMA and Machine Learning Algorithms. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics