Skip to main content

A Critical Analysis of Classifier Selection in Learned Bloom Filters: The Essentials

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Abstract

It is well known that Bloom Filters have a performance essentially independent of the data used to query the filters themselves, but this is no more true when considering Learned Bloom Filters. In this work we analyze how the performance of such learned data structures is impacted by the classifier chosen to build the filter and by the complexity of the dataset used in the training phase. Such analysis, which has not been proposed so far in the literature, involves the key performance indicators of space efficiency, false positive rate, and reject time. By screening various implementations of Learned Bloom Filters, our experimental study highlights that only one of these implementations exhibits higher robustness to classifier performance and to noisy data, and that only two families of classifiers have desirable properties in relation to the previous performance indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experiments and data about this preliminary part are available upon request.

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  2. Broder, A., Mitzenmacher, M.: Network applications of bloom filters, a survey. Internet Math. 1, 636–646 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Carter, J., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111. Association for Computational Linguistics, Doha, Qatar, October 2014

    Google Scholar 

  5. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc.: Ser. B (Methodol.) 20(2), 215–232 (1958)

    MathSciNet  MATH  Google Scholar 

  6. Dai, Z.: Adaptive learned bloom filter (ADA-BF): efficient utilization of the classifier (2022). https://github.com/DAIZHENWEI/Ada-BF. Checked 8 Nov 2022

  7. Dai, Z., Shrivastava, A.: Adaptive Learned Bloom Filter (Ada-BF): efficient utilization of the classifier with application to real-time information filtering on the web. In: Advances in Neural Information Processing Systems, vol. 33, pp. 11700–11710. Curran Associates, Inc. (2020)

    Google Scholar 

  8. Dai, Z., Shrivastava, A., Reviriego, P., Hernández, J.A.: Optimizing learned bloom filters: how much should be learned? IEEE Embed. Syst. Lett. 14(3), 123–126 (2022). https://doi.org/10.1109/LES.2022.3156019

    Article  Google Scholar 

  9. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Willey, New York (1973)

    MATH  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)

    Google Scholar 

  11. Freedman, D.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  12. Fumagalli, G., Raimondi, D., Giancarlo, R., Malchiodi, D., Frasca, M.: On the choice of general purpose classifiers in learned bloom filters: an initial analysis within basic filters. In: Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 675–682 (2022)

    Google Scholar 

  13. Kirsche, M., Das, A., Schatz, M.C.: Sapling: accelerating suffix array queries with learned data models. Bioinformatics 37(6), 744–749 (2020)

    Article  Google Scholar 

  14. Kraska, T.: Towards instance-optimized data systems. Proc. VLDB Endow. 14(12), 3222–3232 (2021)

    Article  Google Scholar 

  15. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD 2018, pp. 489–504. Association for Computing Machinery, New York, NY, USA (2018)

    Google Scholar 

  16. Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex is your classification problem? A survey on measuring classification complexity. ACM Comput. Surv. 52(5), 1–34 (2019)

    Article  Google Scholar 

  17. Malchiodi, D., Raimondi, D., Fumagalli, G., Giancarlo, R., Frasca, M.: A critical analysis of classifier selection in learned bloom filters (2022). https://doi.org/10.48550/ARXIV.2211.15565, https://arxiv.org/abs/2211.15565

  18. Maltry, M., Dittrich, J.: A critical analysis of recursive model indexes. CoRR abs/2106.16166 (2021). https://arxiv.org/abs/2106.16166

  19. Marinò, G.C., Petrini, A., Malchiodi, D., Frasca, M.: Deep neural networks compression: a comparative survey and choice recommendations. Neurocomputing 520, 152–170 (2023)

    Article  Google Scholar 

  20. Mitzenmacher, M.: A model for learned bloom filters and optimizing by sandwiching. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  21. Rahman, A., Medevedev, P.: Representation of k-Mer sets using spectrum-preserving string sets. J. Comput. Biol. 28(4), 381–394 (2021)

    Article  MathSciNet  Google Scholar 

  22. Raudys, S.: On the problems of sample size in pattern recognition. In: Detection, Pattern Recognition and Experiment Design. Proceedings of the 2nd All-Union Conference Statistical Methods in Control Theory. Publ. House “Nauka” (1970)

    Google Scholar 

  23. Vaidya, K., Knorr, E., Kraska, T., Mitzenmacher, M.: Partitioned learned bloom filters. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. Wegman, M.N., Carter, J.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, Q., Wang, Q., Zhang, M., Zheng, R., Zhu, J., Hu, J.: Learned bloom-filter for the efficient name lookup in information-centric networking. J. Netw. Comput. Appl. 186, 103077 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Italian MUR PRIN project 2017WR7SHH “Multicriteria data structures and algorithms: from compressed to learned indexes, and beyond”. Additional support to R.G. has been granted by Project INdAM - GNCS “Analysis and Processing of Big Data based on Graph Models”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Malchiodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malchiodi, D., Raimondi, D., Fumagalli, G., Giancarlo, R., Frasca, M. (2023). A Critical Analysis of Classifier Selection in Learned Bloom Filters: The Essentials. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics