Skip to main content

Data Analytics of Climate Using the PCA-VARI Model Case Study in West Java, Indonesia

  • Conference paper
  • First Online:
Information Technology in Disaster Risk Reduction (ITDRR 2022)

Abstract

Climate change occurs in the atmosphere over a long period due to the influence of the sun, oceans, clouds, ice, land, and living organisms on each other. This research used the Principal Component Analysis (PCA) model compounded with Vector Autoregressive Integrated (VARI) called the PCA-VARI model to determine climate change. PCA reduces correlated climate data to uncorrelated data expressed as main components containing a linear combination of initial variables. In the time series model, a non-stationary multivariate comprises more than two variables that influence each other, using differencing processes. A variety of two models was used simultaneously to forecasting future climate data. Analysis of climate parameters uses ten measurements variable located in five areas, namely Lembang, Bogor, Tasikmalaya, Sukabumi, and Indramayu, for twenty years, using POWER NASA Agro-climatology datasets. The methodology follows the Knowledge Discovery in Databases (KDD) in data mining for integrated PCA with VARI and post-processing using visualization by Impulse Response Function (IRF). The result of forecasting in the PCA-VARI model using IRF in the next six months showed that the effect of location climate on the response of other regions with changes in standard deviation is similar to adjacent locations. Meanwhile, the responses obtained varied based on the observation time for the five areas that are not close.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kishimoto, R., Shimura, T., Mori, N., Mase, H.: Statistical modeling of global mean wave height considering principal component analysis of sea level pressures and its application to future wave height projection. Hydrol. Res. Lett. 11(1), 51–57 (2017)

    Article  Google Scholar 

  2. Washington, B.J., Seymour, L.: An adapted vector autoregressive expectation maximization imputation algorithm for climate data networks. Wiley Interdiscip. Rev. Comput. Stat. 12(6), e1494 (2020)

    Article  MathSciNet  Google Scholar 

  3. Mal, S., Singh, R.B., Huggel, C., Grover, A.: Introducing linkages between climate change, extreme events, and disaster risk reduction. In: Mal, S., Singh, R., Huggel, C. (eds.) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series, pp. 1–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56469-2_1

  4. Pretis, F.: Econometric models of climate systems: the equivalence of two-component energy balance models and cointegrated VARs (2015)

    Google Scholar 

  5. Mamipour, S., Yahoo, M., Jalalvandi, S.: An empirical analysis of the relationship between the environment, economy, and society: results of a PCA-VAR model for Iran. Ecol. Ind. 102, 760–769 (2019)

    Article  Google Scholar 

  6. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn. Elsevier Inc., Massachusetts (2012)

    MATH  Google Scholar 

  7. Niu, J., et al.: A comparative study on application of data mining technique in human shape clustering: principal component analysis vs. factor analysis. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 2014–2018. IEEE, June 2010

    Google Scholar 

  8. Cerón, W.L., et al.: A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, Southern South America. Nat. Hazards 103(1), 767–783 (2020)

    Google Scholar 

  9. Chandra, E., Ajitha, P.: PCA for heterogeneous data sets in a distributed data mining. In: Proceedings of the Fourth Annual ACM Bangalore Conference, pp. 1–4, March 2011

    Google Scholar 

  10. Munandar, D., Ruchjana, B., Abdullah, A.: Principal component analysis-vector autoregressive integrated (PCA-VARI) model using data mining approach to climate data in the West Java Region. Barekeng J. II. Mat. Ter. 16(1), 099–112 (2022)

    Google Scholar 

  11. Yu, Y., Wang, D.: Similarity study of hydrological time series based on data mining. In: Atiquzzaman, M., Yen, N., Xu, Z. (eds.) BDCPS 2020. AISC, vol. 1303, pp. 1049–1055. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4572-0_150

  12. Du, X., Zhu, F.: A novel principal components analysis (PCA) method for energy absorbing structural design enhanced by data mining. Adv. Eng. Softw. 127, 17–27 (2019)

    Article  Google Scholar 

  13. Snedecor, G.W., Cochran, W.G.: Statistical Methods. Iowa State University Press (1989)

    Google Scholar 

  14. Singh, T., Ghosh, A., Khandelwal, N.: Dimensional reduction and feature selection: principal component analysis for data mining. Radiology 285(3), 1055 (2017)

    Article  Google Scholar 

  15. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 6th edn. Pearson Prentice Hall, New Jersey (2007)

    Google Scholar 

  16. Anton, H., Rorrers, C.: Elementary Linear Algebra, 11th edn. Wiley, Hoboken (2014)

    Google Scholar 

  17. Box, G.E.P., Jenkins, G.M.: Time Series Analysis Forecasting and Control. Holden-Day. Inc. (1976)

    Google Scholar 

  18. Dickey, D., Fuller, W.A.: Distribution of the estimators for time series regressions with a unit root. J. Am. Stat. Assoc. 74(366), 427–431 (1979)

    Article  MATH  Google Scholar 

  19. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002). https://doi.org/10.1007/b97391

  20. Box, G.E.P., Cox, D.: An analysis of transformations. J. R. Stat. Soc. B.26(2), 211–252 (1964)

    Google Scholar 

  21. Di Asih, I.M., Rahmawati, R.: Vector autoregressive model approach for forecasting outflow cash in Central Java. J. Phys. Conf. Ser. 1025(1), 012105 (2018)

    Google Scholar 

  22. Nalita, Y., Rahani, R., Tirayo, E.R., Toharudin, T., Ruchjana, B.N.: Ordinary least square and maximum likelihood estimation of VAR (1) model’s parameters and it’s application on Covid-19 in China 2020. J. Phys. Conf. Ser. 1722(1), 012082 (2021)

    Google Scholar 

  23. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  MATH  Google Scholar 

  24. Chan, J.C., Shi, J.E.: Application of projection‐pursuit principal component analysis method to climate studies. Int. J. Climatol. J. R. Meteorol. Soc. 17(1), 103–113 (1997)

    Google Scholar 

  25. Shaharudin, S.M., Ahmad, N., Zainuddin, N.H., Mohamed, N.S.: Identification of rainfall patterns on hydrological simulation using robust principal component analysis. Indones. J. Electr. Eng. Comput. Sci. 11(3), 1162–1167 (2018)

    Google Scholar 

  26. Shahin, M.A., Ali, M.A., Ali, A.B.M.S.: Vector autoregression (VAR) modeling and forecasting of temperature, humidity, and cloud coverage. In: Islam, T., Srivastava, P., Gupta, M., Zhu, X., Mukherjee, S. (eds.) Computational Intelligence Techniques in Earth and Environmental Sciences, pp. 29–51. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8642-3_2

  27. POWER NASA. https://power.larc.nasa.gov/. Accessed 21 May 2022

  28. WIKIMEDIA. https://upload.wikimedia.org/wikipedia/commons/b/b9/Geocultural_regions_of_West_Java.svg. Accessed 21 May 2022

  29. Gabriel, A.G., Santiago, P.N.M., Casimiro, R.R.: Mainstreaming disaster risk reduction and climate change adaptation in comprehensive development planning of the cities in Nueva Ecija in the Philippines. Int. J. Disaster Risk Sci. 12(3), 367–80 (2021)

    Google Scholar 

  30. Newth, D., Gooley, G., Gunasekera, D.: Socio-economic analysis of climate services in disaster risk reduction: a perspective on pacific SIDS. Front. Environ. Sci. 9 (2021)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Rector of Universitas Padjadjaran, who provided financial support to disseminate research reports under the Academic Leadership Grant year 2022 and Studies Center of Modeling and Computation Faculty of Mathematics and Natural Sciences Universitas Padjadjaran. Gratefully thank the Head of the National Research and Innovation Agency (BRIN), who has supported the funding for the Doctoral Program by Research 2022. The authors are also grateful for the discussion on social media analytics through the RISE_SMA project funded by the European Union from 2019–2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budi Nurani Ruchjana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munandar, D., Monika, P., Salsabila, A.B., Helen, A., Abdullah, A.S., Ruchjana, B.N. (2023). Data Analytics of Climate Using the PCA-VARI Model Case Study in West Java, Indonesia. In: Gjøsæter, T., Radianti, J., Murayama, Y. (eds) Information Technology in Disaster Risk Reduction. ITDRR 2022. IFIP Advances in Information and Communication Technology, vol 672. Springer, Cham. https://doi.org/10.1007/978-3-031-34207-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34207-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34206-6

  • Online ISBN: 978-3-031-34207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics