Skip to main content

Principles of Universal Conceptual Modeling

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2023, EMMSAD 2023)

Abstract

The paper proposes a new frontier for conceptual modeling – universal conceptual modeling (UCM) – defined as conceptual modeling that is general-purpose and accessible to anyone. For the purposes of the discussion, we envision a non-existent, hypothetical universal conceptual modeling language, which we call Datish (as in English or Spanish for data). We focus on the need for a universal conceptual data model to explain the expected benefits of UCM. Datish can facilitate the design of many different applications, including relational databases, NoSQL databases, data lakes, and artificial intelligence systems, and enable use by a broad range of users. To pave the way for rigorous development of such a language, we provide a theoretical basis for Datish in the form of a set of universal conceptual modeling principles: flexibility, accessibility, ubiquity, minimalism, primitivism, and modularity. We apply these principles to illustrate their usefulness and to identify future research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzeni, P., et al.: The relational model is dead, SQL is dead, and I don’t feel so good myself. ACM SIGMOD Rec. 42(1), 64–68 (2013)

    Article  Google Scholar 

  2. Azevedo, C.L., et al.: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for ArchiMate. Inf. Syst. 54, 235–262 (2015)

    Article  Google Scholar 

  3. Bjørner, D.: Domain Science and Engineering: A Foundation for Software Development. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73484-8

  4. Blaut, J.M., et al.: Mapping as a cultural and cognitive universal. Ann. Assoc. Am. Geogr. 93(1), 165–185 (2003)

    Article  Google Scholar 

  5. Bork, D.: Conceptual modeling and artificial intelligence: challenges and opportunities for enterprise engineering. In: Aveiro, D., Proper, H.A., Guerreiro, S., de Vries, M. (eds.) Enterprise Engineering Working Conference, pp. 3–9. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11520-2_1

    Chapter  Google Scholar 

  6. Bugiotti, F., et al.: Database design for NoSQL systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) Conceptual Modeling, pp. 223–231. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_18

  7. Burton-Jones, A., Weber, R.: Building conceptual modeling on the foundation of ontology. In: Computing Handbook: Information Systems and Information Technology, Boca Raton, FL, United States, pp. 15.1–15.24 (2014)

    Google Scholar 

  8. Castellanos, A., et al.: Basic classes in conceptual modeling: theory and practical guidelines. J. Assoc. Inf. Syst. 21(4), 1001–1044 (2020)

    Google Scholar 

  9. Chatziantoniou, D., Kantere, V.: Data virtual machines: data-driven conceptual modeling of big data infrastructures. Presented at the EDBT/ICDT Workshops (2020)

    Google Scholar 

  10. Chatziantoniou, D., Kantere, V.: Data virtual machines: enabling data virtualization. In: Rezig, E.K., et al. (eds.) Heterogeneous Data Management, Polystores, and Analytics for Healthcare, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93663-1_1

    Chapter  Google Scholar 

  11. Chomsky, N.: Knowledge of Language: Its Nature, Origin, and Use. Greenwood Publishing Group, Westport (1986)

    Google Scholar 

  12. Chua, C.E.H., et al.: Data management. MIS Q. 1–10 (2022)

    Google Scholar 

  13. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  14. Compagnucci, I., Corradini, F., Fornari, F., Re, B.: Trends on the usage of BPMN 2.0 from publicly available repositories. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds.) BIR 2021. LNBIP, vol. 430, pp. 84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87205-2_6

    Chapter  Google Scholar 

  15. De Carlo, G., et al.: Rethinking model representation-a taxonomy of advanced information visualization in conceptual modeling. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling, pp. 35–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_3

  16. Dehaene, S., et al.: Symbols and mental programs: a hypothesis about human singularity. Trends Cogn. Sci. (2022)

    Google Scholar 

  17. Dupré, J.: A process ontology for biology. Philos. Mag. 67, 81–88 (2014)

    Google Scholar 

  18. Elahi, H., et al.: Pleasure or pain? An evaluation of the costs and utilities of bloatware applications in android smartphones. J. Netw. Comput. Appl. 157, 102578 (2020)

    Article  Google Scholar 

  19. Eriksson, O., et al.: The case for classes and instances-a response to representing instances: the case for reengineering conceptual modelling grammars. Eur. J. Inf. Syst. 28(6), 681–693 (2019)

    Article  Google Scholar 

  20. Fettke, P., Reisig, W.: Systems mining with heraklit: the next step. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022 Forum, pp. 89–104. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16171-1_6

    Chapter  Google Scholar 

  21. Germonprez, M., et al.: A theory of tailorable technology design. J. Assoc. Inf. Syst. 8(6), 351–367 (2007)

    Google Scholar 

  22. Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes with data vault: practical experiences, assessment, and lessons learned. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_7

    Chapter  Google Scholar 

  23. Goddard, C.: Semantic theory and semantic universals. In: Semantic and Lexical Universals, pp. 7–29 (1994)

    Google Scholar 

  24. Gonzalez-Perez, C.: How ontologies can help in software engineering. In: Cunha, J., Fernandes, J.P., Lämmel, R., Saraiva, J., Zaytsev, V. (eds.) GTTSE 2015. LNCS, vol. 10223, pp. 26–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60074-1_2

    Chapter  Google Scholar 

  25. Gregor, S., et al.: The anatomy of a design principle. J. Assoc. Inf. Syst. 21(6), 1622–1652 (2020)

    Google Scholar 

  26. Guarino, N., Guizzardi, G.: In the defense of ontological foundations for conceptual modeling. Scand. J. Inf. Syst. 18(1), 115–126 (2006)

    Google Scholar 

  27. Guizzardi, G.: Ontological foundations for structural conceptual models. Telematics Instituut Fundamental Research Series, Enschede, The Netherlands (2005)

    Google Scholar 

  28. Guizzardi, G., et al.: Towards ontological foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontol. 10(3–4), 259–271 (2015)

    Article  Google Scholar 

  29. Harman, G.: Object-Oriented Ontology: A New Theory of Everything. Penguin UK, London (2018)

    Google Scholar 

  30. Henderson-Sellers, B.: Why philosophize; why not just model? In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_1

    Chapter  Google Scholar 

  31. Hvalshagen, M., et al.: Empowering users with narratives: examining the efficacy of narratives for understanding data-oriented conceptual models. Inf. Syst. Res. 1–38 (2023)

    Google Scholar 

  32. Iacub, P.: Software ERP: El nuevo Gran Hermano de las organizaciones. Autores de Argentina, Buenos Aires (2015). https://bit.ly/3phEmbX

  33. Kastrup, B.: An ontological solution to the mind-body problem. Philosophies 2(2), 10 (2017)

    Google Scholar 

  34. Kaur, K., Rani, R.: Modeling and querying data in NoSQL databases. In: 2013 IEEE International Conference on Big Data, pp. 1–7 IEEE (2013)

    Google Scholar 

  35. Lima, L., et al.: An integrated semantics for reasoning about SysML design models using refinement. Softw. Syst. Model. 16(3), 875–902 (2015). https://doi.org/10.1007/s10270-015-0492-y

    Article  Google Scholar 

  36. Lorenzatti, A., Abel, M., Fiorini, S.R., Bernardes, A.K., dos Santos Scherer, C.M.: Ontological primitives for visual knowledge. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010. LNCS (LNAI), vol. 6404, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16138-4_1

    Chapter  Google Scholar 

  37. Lukyanenko, R., et al.: Artifact sampling: using multiple information technology artifacts to increase research rigor. In: Proceedings of the 51st Hawaii International Conference on System Sciences (HICSS 2018), Big Island, Hawaii, pp. 1–12 (2018)

    Google Scholar 

  38. Lukyanenko, R., Storey, V.C., Pastor, O.: Foundations of information technology based on Bunge’s systemist philosophy of reality. Softw. Syst. Model. 20(4), 921–938 (2021). https://doi.org/10.1007/s10270-021-00862-5

    Article  Google Scholar 

  39. Lukyanenko, R., et al.: Representing instances: the case for reengineering conceptual modeling grammars. Eur. J. Inf. Syst. 28(1), 68–90 (2019)

    Article  Google Scholar 

  40. Lukyanenko, R., et al.: System: a core conceptual modeling construct for capturing complexity. Data Knowl. Eng. 141, 1–29 (2022)

    Article  Google Scholar 

  41. Lukyanenko, R., Parsons, J.: Beyond micro-tasks: research opportunities in observational crowdsourcing. J. Database Manag. (JDM) 29(1), 1–22 (2018)

    Article  Google Scholar 

  42. Mayr, H.C., Thalheim, B.: The triptych of conceptual modeling. Softw. Syst. Model. 20(1), 7–24 (2020). https://doi.org/10.1007/s10270-020-00836-z

    Article  Google Scholar 

  43. Miller, G.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  44. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

    Article  Google Scholar 

  45. Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering, pp. 429–443. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-36926-1_35

    Chapter  Google Scholar 

  46. Mylopoulos, J.: Information modeling in the time of the revolution. Inf. Syst. 23(3–4), 127–155 (1998)

    Article  Google Scholar 

  47. Norman, D.A.: The Design of Everyday Things. Bsic Books, New York, NY (2002)

    Google Scholar 

  48. Noth, W.: Handbook of Semiotics. Indiana University Press, Bloomington (1990)

    Google Scholar 

  49. Parsons, J., Wand, Y.: Emancipating instances from the tyranny of classes in information modeling. ACM Trans. Database Syst. 25(2), 228–268 (2000)

    Article  Google Scholar 

  50. Partridge, C., et al.: Are conceptual models concept models? Presented at the International Conference on Conceptual Modeling (2013)

    Google Scholar 

  51. Recker, J.: BPMN research: what we know and what we don’t know. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 1–7. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8_1

    Chapter  Google Scholar 

  52. Recker, J., et al.: From representation to mediation: a new agenda for conceptual modeling research in a digital world. MIS Q. 45(1), 269–300 (2021)

    Article  Google Scholar 

  53. Roberts, S.: Is Geometry a Language That Only Humans Know? (2022). https://www.nytimes.com/2022/03/22/science/geometry-math-brain-primates.html

  54. Rosch, E., et al.: Basic objects in natural categories. Cogn. Psychol. 8(3), 382–439 (1976)

    Article  Google Scholar 

  55. Sablé-Meyer, M., et al.: A language of thought for the mental representation of geometric shapes. Cogn. Psychol. 139, 101527 (2022)

    Article  Google Scholar 

  56. Sablé-Meyer, M., et al.: Sensitivity to geometric shape regularity in humans and baboons: a putative signature of human singularity. Proc. Natl. Acad. Sci. 118, 16, e2023123118 (2021)

    Google Scholar 

  57. Stea, D., et al.: Mapping as a cultural universal. In: Portugali, J. (ed.) The Construction of Cognitive Maps, pp. 345–360. Springer, Dordrecht (1996)

    Chapter  Google Scholar 

  58. Storey, V.C., et al.: Conceptual modeling: topics, themes, and technology trends. ACM Comput. Surv. (2023)

    Google Scholar 

  59. Teigland, R., Power, D.: The immersive internet: reflections on the entangling of the virtual with society, politics and the economy. Palgrave Macmillan, New York (2013)

    Google Scholar 

  60. Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis and design grammars. Inf. Syst. J. 3(4), 217–237 (1993)

    Article  Google Scholar 

  61. Wand, Y., Weber, R.: Research commentary: Information systems and conceptual modeling - a research agenda. Inf. Syst. Res. 13(4), 363–376 (2002)

    Article  Google Scholar 

  62. Western, P.: Why the majority of data projects fail: the case for a Universal Data Language. https://snowplow.io/blog/project-failure-universal-data-language/. Accessed 09 Jan 2023

  63. Wyssusek, B., Zaha, J.M.: Towards a pragmatic perspective on requirements for conceptual modeling methods. Presented at the EMMSAD (2007)

    Google Scholar 

  64. Zittrain, J.: The Future of the Internet–and How To Stop It. Yale University Press, New Haven (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Lukyanenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukyanenko, R., Parsons, J., Storey, V.C., Samuel, B.M., Pastor, O. (2023). Principles of Universal Conceptual Modeling. In: van der Aa, H., Bork, D., Proper, H.A., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2023 2023. Lecture Notes in Business Information Processing, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-031-34241-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34241-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34240-0

  • Online ISBN: 978-3-031-34241-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics