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Abstract

The hypercube of dimension n is the graph whose vertices are the 2n binary
words of length n, and there is an edge between two of them if they have Hamming
distance 1. We consider an edit distance based on swaps and mismatches, to which
we refer as tilde-distance, and define the tilde-hypercube with edges linking words
at tilde-distance 1. Then, we introduce and study some isometric subgraphs of
the tilde-hypercube obtained by using special words called tilde-isometric words.
The subgraphs keep only the vertices that avoid a given tilde-isometric word as a
factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a
generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-
Fibonacci cube can be recursively defined; the same holds for the number of their
edges. This allows an asymptotic estimation of the number of edges in the tilde-
Fibonacci cube, in comparison to the total number in the tilde-hypercube.

Keywords: Swap and mismatch distance, Isometric words, Hypercube.

1 Introduction
The n-dimensional hypercube,Qn, encloses all the binary strings of length n and hence
it is a model that deserves a starring role in graph theory. It is defined as a graph whose
vertices are in correspondence with the 2n words of length n and there is an edge
between two vertices if the corresponding words differ in one position, that is if their
Hamming distance is 1. Hence, the distance between two vertices in the graph is equal
to the Hamming distance of the corresponding words. During the years, the notion
of hypercube has been extensively investigated (see [10] for a survey). Hypercubes

*Partially supported by INdAM-GNCS Project 2022 and 2023, FARB Project ORSA229894 of Univer-
sity of Salerno, TEAMS Project of University of Catania and by the MIUR Excellence Department Project
MatMod@TOV awarded to the Department of Mathematics, University of Rome Tor Vergata.

1

ar
X

iv
:2

30
3.

09
89

8v
1 

 [
m

at
h.

C
O

] 
 1

7 
M

ar
 2

02
3



are used for designing interconnection networks and they found applications also in
theoretical chemistry (see [14] for a survey). However, hypercubes have a critical
limitation due to the fact that they have an exponential number of vertices. For this,
various modifications have been proposed by considering subgraphs that are isometric,
that is the distance of any pair of vertices in such subgraphs is the same as the distance
in the complete hypercube. With this aim, in 1993, Hsu introduced the Fibonacci
cubes [11]. They are isometric subgraphs ofQn obtained by selecting only the vertices
whose corresponding words do not contain 11 as factor. They have many remarkable
properties also related to Fibonacci numbers.

Generalized Fibonacci cubes Qn(f) were introduced in 2012 as the subgraphs of
Qn keeping only vertices associated to binary words that do not contain f as a factor,
i.e. f -free binary words [12]. Note that, in order to get an isometric subgraph of Qn,
the avoided word should satisfy some special conditions; if this is the case, then the
word is said isometric. Indeed, a binary word f is isometric (or Ham-isometric) when,
for any n ≥ 1, Qn(f) can be isometrically embedded into Qn, and non-isometric,
otherwise [15]. The structure of binary Ham-isometric words has been characterized
in [13, 15, 18, 21, 22] and the research on the topic is still very active [7, 19, 20].

Recently, binary Ham-isometric words have been considered in the two-dimensional
setting, and Ham-non-isometric pictures (also called bad pictures) have been investi-
gated [6]. Moreover, the notion of isometric word has been extended to the case of
alphabets of size k, with k > 2, by considering k-ary n-cubes, Qk

n, and k-ary n-
cubes avoiding a word f , Qk

n(f). In this setting, the distance between two vertices
is no longer their Hamming distance, but their Lee distance. Taking into account this
distance, Lee-isometric k-ary words have been introduced, studied and characterized
[3, 4, 5]. Using the characterizations of Ham- and Lee-isometric words, in [4, 8],
some linear-time algorithms are provided in order to check whether a word is isometric
and to give some interesting information on non-isometric words. Worthily, Ham- and
Lee-isometric words can be defined and studied by ignoring hypercubes and adopting
a point of view closer to combinatorics on words. Actually, a word f is Ham- (Lee-,
resp.) isometric, if for any pair of f -free words u and v of the same length, u can be
transformed in v by a sequence of f -free words, starting with u and ending with v,
such that the sequence has length equal to the Hamming (Lee, resp.) distance between
u and v and every two consecutive words in the sequence have Hamming (Lee, resp.)
distance equal to 1.

In some applications coming from computational biology, it seems natural to con-
sider the swap operation of exchanging two adjacent different symbols in a word. Then,
an edit distance based on swap and mismatch errors seems worth considering [1, 9]. In
[2] this distance is referred to as tilde-distance, since the ∼ symbol somehow evokes
the swap operation. Tilde-isometric words have been defined using the tilde-distance,
in place of Hamming or Lee distance, and studied from a combinatorial point of view.

In this paper, the tilde-distance serves as the base to define the tilde-hypercube,
Q̃n; it has again all the n-binary strings as vertices, but the edges correspond to tilde-
distance equal to 1. This implies that Q̃n has more edges thanQn; in particular, since a
swap corresponds to two mismatches, some vertices having distance 2 in Qn, become
adjacent in Q̃n. We give a recursive construction of tilde-hypercubes and enumerate
the number of their edges. Then, we consider subgraphs of the tilde-hypercubes Q̃n(f)
by selecting the vertices corresponding f -free words, for a given word f . It is easy to
show that f is tilde-isometric if and only if Q̃n(f) is an isometric subgraph of Q̃n. We
present an infinite family of tilde-isometric words that are not Hamming isometric. The
last part of the paper is devoted to select special words f . For what concern the word
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f = 11, that is both Hamming- and tilde-isometric, the subgraph Q̃n(11) is referred to
as the tilde-Fibonacci cube. We present a recursive construction for it and we compare
it with the classic Fibonacci cube. We show that the number of edges in the tilde-
Fibonacci cube is about 1/7 less than the number of edges in the whole tilde-hypercube.
We also examine Qn(1010), where 1010 is a tilde-non-isometric but Ham-isometric
word and Q̃n(11100), where 11100 is Ham-non-isometric and tilde-isometric word.
The paper ends with a small table comparing vertices and edges cardinality and ratio
of Qn(1010) and Q̃n(11100) of order n = 4, . . . , 16.

2 Preliminaries
In this paper we only focus on the binary alphabet Σ = {0, 1}. A word (or string) w of
length |w| = n, is w = a1a2 · · · an, where a1, a2, . . . , an are symbols in Σ. The set of
all words over Σ is denoted Σ∗. Finally, ε denotes the empty word and Σ+ = Σ∗−{ε}.
For any word w = a1a2 · · · an, the reverse of w is the word wrev = anan−1 · · · a1. If
x ∈ Σ, x denotes the opposite of x, i.e x = 1 if x = 0 and viceversa. Then we define
complement of w the word w = a1a2 · · · an.

Let w[i] denote the symbol of w in position i, i.e. w[i] = ai. Then, w[i..j] =
ai . . . aj , for 1 ≤ i ≤ j ≤ n, denotes a factor of w. The prefix (resp. suffix) of w of
length l, with 1 ≤ l ≤ n − 1 is prel(w) = w[1..l] (resp. suf l(w) = w[n − l + 1..n]).
When prel(w) = suf l(w) = u then u is here referred to as an overlap of w of length l;
in other frameworks, it is also called border, or bifix. A word w is said f -free if w does
not contain f as a factor.

An edit operation is a function O : Σ∗ → Σ∗ that transforms a word into another
one.

Let OP be a set of edit operations. The edit distance of words u, v ∈ Σ∗ is the
minimum number of edit operations in OP needed to transform u into v.

In this paper, we consider the edit distance that uses only swap and replacement
operations to fix swap and mismatch errors. Note that these operations preserve the
length of the word.

Definition 1 Let w = a1a2 . . . an be a word over Σ.
The replacement operation (or replacement, for short) on w at position i

is defined by

Ri(a1a2 . . . ai−1aiai+1 . . . an) = a1a2 . . . ai−1aiai+1 . . . an.

The swap operation (or swap, for short) on w at position i
with ai 6= ai+1, is defined by

Si(a1a2 . . . ai−1aiai+1ai+2 . . . an) = a1a2 . . . ai−1ai+1aiai+2 . . . an.

Note that one swap corresponds to the replacement of two consecutive symbols.
The Hamming distance distH(u, v) of u, v ∈ Σ∗ is defined as the minimum number

of replacements needed to get v from u. A word f is Ham-isometric if for any pair of
f -free words u and v, there exists a sequence of replacements of length distH(u, v)
that transforms u into v where all the intermediate words are also f -free.

A word w has a 2-error overlap if there exists l such that prel(w) and suf l(w) have
Hamming distance 2 (cf. [18]). Then, it is proved the following characterization of
Ham-isometric words.
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Proposition 2 ([18]) A word f is Ham-isometric if and only if f has a 2-error overlap.

Let G be a graph, V (G) be the set of its nodes and E(G) be the set of its edges.
The distance of u, v ∈ V (G), distG(u, v), is the length of the shortest path connecting
u and v in G. The diameter of G, denoted by d(G), is the maximum distance of two
vertices in G. A subgraph S of a (connected) graph G is an isometric subgraph if for
any u, v ∈ V (S), distS(u, v) = distG(u, v).

Let us recall the notion of hypercube and Fibonacci cube, related to the Hamming
distance. The n-hypercube, or binary n-cube, Qn, is a graph with 2n vertices, each
associated to a binary word of length n. The vertices are often identified with the
associated word. Two vertices u and v in Qn are adjacent when their associated words
differ in exactly 1 position, i.e. when distH(u, v) = 1. Therefore, distQn

(u, v) =
distH(u, v).

Denote by fn the n-th Fibonacci number, defined by f1 = 1, f2 = 1 and fi =
fi−1 +fi−2, for i ≥ 3. The Fibonacci cube Fn of order n is the subgraph of Qn whose
vertices are binary words of length n avoiding the factor 11. It is well known that Fn

is an isometric subgraph of Qn (cf. [14]). Isometric subgraphs of hypercubes are also
called partial cubes.

One of the main properties of Qn and Fn is their recursive structure that have been
extensively studied (cf. [11], [16] and [14]).

The following results are well-known, but are hereby stated for future reference.

Proposition 3 Let Qn be the hypercube of order n and Fn be the Fibonacci cube.
Then

• |V (Qn)| = 2n and |E(Qn)| = n2n−1

• |V (Fn)| = fn+2

• |E(F1)| = 1, |E(F2)| = 2 and |E(Fn)| = |E(Fn−1)|+|E(Fn−2)|+fn,∀n > 2

|E(Fn)| = 2(n+ 1)fn + nfn+1

5

The sequence |E(Fn)| is Sequence A001629 in [17]. Hence, the number of edges
of a Fibonacci cube withN vertices isO(N logN), asymptotically equal to the number
of edges of a hypercube with the same number of vertices.

3 Tilde-isometric words
In this section, we consider the edit distance based on swap and replacement operations
used to fix swap and mismatch errors between two words. It is called tilde-distance and
denoted by dist∼. We recall the definition of tilde-isometric words given in [2] and
then present a family of tilde-isometric words.

Definition 4 Let u, v ∈ Σ∗ be words of equal length. The tilde-distance dist∼(u, v)
between u and v is the minimum number of replacements and swaps needed to trans-
form u into v.
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Definition 5 Let u, v ∈ Σ∗ be words of equal length.
A tilde-transformation τ of length h from u to v is a sequence of words (w0, w1, . . . , wh)
such that w0 = u, wh = v, and for any k = 0, 1, . . . , h − 1, dist∼(wk, wk+1) = 1.
Further, τ is f -free if for any i = 0, 1, . . . , h, word wi is f -free. It is minimal if its
length is equal to dist∼(u, v) and characters in each position are modified at most
once.

A tilde-transformation (w0, w1, . . . , wh) from u to v is associated to a sequence of h
operations (Oi1 , Oi2 , . . . Oih) such that, for any k = 1, . . . , h, Oik ∈ {Rik , Sik} and
wk = Oik(wk−1); it can be represented as follows:

u = w0

Oi1−−→ w1

Oi2−−→ · · ·
Oih−−→ wh = v.

With a little abuse of notation, in the sequel we will refer to a tilde-transformation both
as a sequence of words and as a sequence of operations. Let us give some examples.

Example 6 Let u = 1011, v = 0110. Below, two different tilde-transformations from
u to v are shown. Note that the length of τ1 corresponds to dist∼(u, v) = 2.

τ1 : 1011
S1−→ 0111

R4−−→ 0110 τ2 : 1011
R1−−→ 0011

R2−−→ 0111
R4−−→ 0110

Furthermore, consider the following tilde-transformations of u′ = 100 into v′ = 001:

τ ′1 : 100
S1−→ 010

S2−→ 001 τ ′2 : 100
R1−−→ 000

R3−−→ 001

Note that both τ ′1 and τ ′2 have the same length equal to dist∼(u′, v′) = 2 and that, in
τ ′1 the symbol in position 2 is changed twice.

In [2] it is proved that a minimal tilde-transformation always exists in the binary
case. Let us now define isometric words based on the tilde distance.

Definition 7 Let f ∈ Σ∗ be a word of length n with n ≥ 1. The word f is tilde-
isometric if for any pair of f -free words u and v of equal length m ≥ n, there exists a
minimal tilde-transformation from u to v that is f -free. It is tilde-non-isometric if it is
not tilde-isometric.

In order to prove that a word is tilde-non-isometric it is sufficient to exhibit a pair
(u, v) of words contradicting Definition 7. More challenging is to prove that a word is
tilde-isometric.

Example 8 The word f = 1010 is tilde-non-isometric. In fact, let u = 11000 and v =
10110; u and v are f -free; moreover the only possible minimal tilde-transformations
from u to v are 11000

S2−→ 10100
R4−−→ 10110 and 11000

R4−−→ 11010
S2−→ 10110, and

in both cases 1010 appears as factor after the first step. On the other side, observe that
f is Ham-isometric by Proposition 2.

Remark 9 When a tilde-transformation contains a swap and a replacement that are
adjacent, there could exist minimal tilde-transformations that involve different sets of
operations. For instance, the pair (u, v), with u = 010 and v = 101, has two minimal

tilde-transformations: 010
S1−→ 100

R3−−→ 101 and 010
S2−→ 001

R1−−→ 101.
This fact never occurs when only replacements are allowed and thus it constitutes

a new difficulty, with respect to the Hamming distance case, to prove the isometricity.
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Let us highlight the following straightforward property of tilde-isometric binary
words that is very helpful to simplify proofs.

Remark 10 A word f is tilde-isometric iff f is tilde-isometric iff frev is tilde-isometric.

In view of Remark 10 , we will focus on words starting with 1. The following proposi-
tion explicitly explores the tilde-isometricity for all words of length 2, 3 and 4.

Proposition 11 The following statements hold.

1. All words of length 2 are tilde-isometric

2. All words of length 3, except for 101 and 010, are tilde-isometric

3. The words 1111, 1110, 1000, 0000, 0001, 0111 are tilde-isometric. All the other
words of length 4 are tilde-non-isometric.

Proof: Consider the different cases:

1. If |f | = 2, two cases arise, up to reverse and complement: f = 10 and f = 11.
They are both tilde-isometric words because of next Proposition 12.

2. If |f | = 3, three cases arise, up to complement and reverse.

• f = 111 and f = 100, are tilde-isometric because of Proposition 12.

• f = 101, is tilde-non-isometric. In fact, u = 1111 and v = 1001 contradict
isometricity of f , since they are f -free, and all the minimal transformations
of u into v need to change u into a word that has 101 as a factor.

3. If |f | = 4, the following cases arise, up to complement and reverse.

• f = 1111 and f = 1110 are tilde-isometric because of Proposition 12.

• f = 1100. Then u = 110100 and v = 101010 contradict isometricity of f .

• f = 1001. Then u = 11011 and v = 10001 contradict isometricity of f .

• f = 1010 is tilde-non-isometric (see Example 8).

• f = 1011. Then u = 11111 and v = 10011 contradict isometricity of f .

2

Let us show an infinite family of words that are tilde-isometric, but not Ham-
isometric, by Proposition 2.

Proposition 12 Let fh,k = 1h0k, with h, k ≥ 0. Then, fh,k is tilde-isometric for any
h, k ≥ 0, except for h = k = 2, i.e., f2,2 = 1100 is tilde-non-isometric.

Proof: Suppose that f = fh,k = 1h0k, f 6= 1100, is tilde-non-isometric and let
(u, v), with u, v ∈ Σm, be a pair of words contradicting Definition 7, with minimal
d = dist∼(u, v) among all such pairs of words with length m.

Let {Oi1 , Oi2 , . . . , Oid} be the set of operations of a minimal tilde-transformation
from u to v, 1 ≤ i1 < i2 < · · · < id ≤ m, where for any j = 1, 2, . . . , d,
Oij ∈ {Rij , Sij}. Then, for j = 1, 2, . . . , d, Oij (u) has an occurrence of f in an
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interval, say Ij , which contains at least one position modified byOij . Note that, this oc-
currence of f must disappear in a tilde-transformation from u to v, because v is f -free.
Hence, Ij contains a position modified by another operation in {Oi1 , Oi2 , . . . , Oid}.
By the pigeonhole principle, there exist s, t ∈ {i1, i2, . . . id}, such that Os(u) has an
occurrence of f in Is = [ks..ks + n − 1] that contains at least one position modified
by Ot and Ot(u) has an occurrence of f in It = [kt..kt + n− 1] that contains at least
one position modified by Os. Without loss of generality, suppose that ks < kt. Now,
let I = [p..q] be the intersection of Is and It; this interval intercepts a suffix of f in
Os(u) and a prefix of f in Ot(u) of same length l, with l = q − p+ 1. In other words,
(Os(u))[p..q] = sufl(f) and (Ot(u))[p..q] = prefl(f). Note that this implies f 6= 1k.

The interval I can contain either four, or three, or two among the positions modified
by Os and Ot, of which at least one is modified by Os and at least one by Ot. One can
show that a contradiction follows in all cases. We give details only in some cases that
involve swap operations; the other ones can be treated in an analogous way.

Consider the case that I contains four positions modified by Os and Ot. There-
fore, Os and Ot are swaps, i.e. Os = Ss and Ot = St, with s, t ∈ [p..q]. Since
(Ss(u))[p..q] = sufl(f), one has

u[p..q] ∈ 1∗010∗. But, then, there exists no other swap operation in u[p..q] that can
give a prefix of f , as it should be for St.

Consider now the case that I contains two positions modified by Os and Ot. Three
cases are possible following that Os and Ot are both replacement operations, or both
swap operations

(with s = p − 1 and t = q), or one is a swap and the other a replacement (with
s = p− 1 and t ∈ [p+ 1..q] or s ∈ [p..q − 1] and t = q).

Let us consider the case they are
both swap operations. If Os = Sp−1 and Ot = Sq then the two positions modified

in u[p..q] by Os and Ot must be positions p and q.
Suppose q = p+ 1.
If u[p..q] = 10 then u[p− 1..q + 1] = 0101. The application of Sp−1 on u implies

that f ends with 100, whereas the application of Sq implies that f begins with 110.
Hence, f = 1100, against the hypothesis. The application of Sp−1 on u in the cases
that u[p..q] = 00, 01, 11, respectively, would result in a suffix 010, 011, 101 of f , and
this is a contradiction. Suppose now q > p+ 1.

If u[p] = 1 then u[p..q] ∈ 10∗, since (Sp−1(u))[p..q] = sufl(f), but there exists
no other swap operation in u[p..q] that can give a prefix of f , as it should be for Sq .
An analogous reasoning shows that u[p] = 0 cannot hold either. Therefore, also in this
case, a contradiction follows. 2

The notion of tilde-isometricity is not comparable with the one of Ham-isometricity.
Furthermore, the following result holds.

Proposition 13 The word 11100 is the shortest tilde-isometric word that is not Ham-
isometric. The word 1010 is the shortest Ham-isometric word that is not tilde-isometric.

Proof: The word 11100 is tilde-isometric (Proposition 12) but Ham-non-isometric
(Proposition 2). On the other hand 1010 is tilde-non-isometric (Proposition 11), and it
is Ham-isometric (Proposition 2). The minimality of the length of these words comes
from Proposition 11. 2
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0000 1000

0010 1010

0100 1100

0110 1110

0001 1001

0101 1101

0111 1111

0011 1011

(a)

0000 1000

0010 1010

0100

0001 1001

0101

(b)

Figure 1: The tilde-hypercube of order 4 (a) the tilde-Fibonacci cube of order 4 (b)

4 The tilde-hypercube
Classical hypercubes connect vertices following their Hamming distance, whereas the
distance of vertices in a k-ary n-cube represents their Lee-distance. This suggests
to investigate hypercubes based on other distances. In this paper we introduce the
tilde-hypercube, whose vertices are the binary words and edges connect vertices with
tilde-distance equal to 1. Then, its recursive structure is explored.

Definition 14 The n-tilde-hypercube Q̃n, is a graph with 2n vertices, each associated
to a binary word of length n. Two vertices in Q̃n, are adjacent whenever their tilde-
distance is 1.

Figure 1(a) shows the tilde-hypercube of order 4.

Remark 15 Qn is a proper subgraph of Q̃n. In fact for u, v ∈ Σ∗, distH(u, v) = 1
implies dist∼(u, v) = 1. Further, for any n ≥ 2, there exist words un, vn of length n
such that dist∼(un, vn) = 1 and distH(un, vn) 6= 1, for example un = 0n−201 and
vn = 0n−210, so that (un, vn) is an edge in Q̃n but not in Qn.

The following lemma is the main tool to exhibit a recursive definition of the tilde-
hypercube, in analogy with the classical hypercube.

Lemma 16 For any u, v ∈ Σn−1, dist∼(u0, v0) = dist∼(u, v) = dist∼(u1, v1) and
dist∼(u0, u1) = 1. Moreover for any u′ ∈ Σn−2, dist∼(u′01, u′10) = 1.

Proposition 17 Q̃n can be recursively defined.

Proof: If n = 1, Q̃1 has just two vertices 0 and 1 connected by an edge.
Suppose the tilde-hypercubes of dimension smaller than n have been defined. Con-

sider two copies of Q̃n−1. In the first copy all the vertices u are replaced by u0 and in
the second by u1. By Lemma 16, if u and v are connected in Q̃n−1, then u0 and v0
(u1 and v1, respectively) are connected in Q̃n. Moreover for any u ∈ Σn−1, u0 in the
first copy and u1 in the second copy are linked. Finally, for each vertex of Q̃n−1 that
ends with 1, say u = u′1, there is an edge between u′10 in the first copy of Q̃n and
u′01 in the second copy of Q̃n (see green edges in Fig. 1(a)). For any other pair of
words u, v ∈ {0, 1}n we have dist∼(u, v) > 1. 2

8



Corollary 18 Let Q̃n be the tilde-hypercube of order n. Then

|E(Q̃n)| = 2|E(Q̃n−1)|+ 2n−1 + 2n−2, with |E(Q̃1)| = 1

Proof: By the recursive construction in Proposition 17, Q̃n has twice the number of
edges of Q̃n−1 (since it has two copies of it), plus 2n−1 edges, one for each vertex of
Q̃n−1, plus 2n−2 edges, one for each vertex of Q̃n−1 that ends with a 1. 2

By solving the recurrence we find the exact solution |E(Q̃n)| = (3n−1)·2n−2 (Se-
quence A053220 in [17]). Let ẼQ(N) be the number of edges of the tilde-hypercube
with N vertices. Then,

ẼQ(N) = N(3 logN − 1)/4 (1)

5 The tilde-hypercube avoiding a word
The so-called generalized Fibonacci cube has been defined in [12] as the subgraph
of the hypercube where the vertices having a given word as factor are removed. In
analogy, we introduce the definitions of the tilde-hypercube and the

tilde-Fibonacci cube.

Definition 19 The n-tilde-hypercube avoiding a word f , denoted Q̃n(f), is the sub-
graph of Q̃n obtained by removing those vertices which contain f as a factor.

Next proposition states the relationship between tilde-isometric words and sub-
graphs of the tilde-hypercube avoiding a word. The proof can be easily derived from
the definitions.

Proposition 20 A word f ∈ Σ∗ is tilde-isometric if and only if for all n ≥ |f |, Q̃n(f)
is an isometric subgraph of Q̃n.

Example 21 All binary words of length 2 are both tilde-isometric (Proposition 11)
and Ham-isometric and for each n ≥ 1, Q̃n(10) and Qn(10) coincide. In fact,
V (Q̃n(10)) = {0h1k| h, k ≥ 0, h+k = n} andE(Q̃n(10)) = {(0i1j , 0i−11j+1)| 1 ≤
i, j ≤ n}. The case of word 11 deserves to be treated in a separated section. The other
words of length 2 are tilde-isometric by complement (see Remark 10).

5.1 The tilde-Fibonacci cube
The tilde-hypercube avoiding word 11 is called the tilde-Fibonacci cube, in analogy to
the Fibonacci cube introduced by Hsu [11]. Here, we show a recursive construction
of the tilde-Fibonacci cube; it allows to enumerate the number of its edges and then to
compare it with the number of edges of the tilde-hypercube with the same number of
vertices.

Definition 22 The n-tilde-Fibonacci cube, denoted F̃n, is F̃n = Q̃n(11), n ≥ 1.

By Proposition 3, |V (F̃n)| = |V (Fn)| = fn+2. Among these vertices, fn+1 end
with a 0 and fn end with a 1. Figure 1(b) shows the tilde-Fibonacci cube of order 4.

Remark 23 Let u ∈ V (Fn−1), x ∈ Σ. If u ends with 1, then ux ∈ V (F̃n) iff x = 0.
If u ends with 0 then ux ∈ V (F̃n), for any x ∈ {0, 1}.
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Proposition 24 The tilde-Fibonacci cube F̃n can be recursively defined.

Proof: If n = 1, F̃1 has two vertices 0 and 1 connected by an edge. If n = 2, F̃2 has
three vertices 00, 01 and 10 and E(F̃2) = {(00, 10), (00, 01), (01, 10)}.

Suppose F̃i are defined for all i < n. For any n ≥ 3, F̃n can be constructed from
a copy of F̃n−1 (say F̃n−1) and a copy of F̃n−2 (say F̃n−2), where each vertex u in
F̃n−1 is replaced by u0 in F̃n−1, and each vertex v in F̃n−2 is replaced by v01 in F̃n−2.
Further, for any v of length n − 2, there is an edge between v00 in F̃n−1 and v01 in
F̃n−2, an edge between v10 in F̃n−1 and v01 in F̃n−2 (see the green edges in Fig. 1).
By Remark 23 and Lemma 16 no further edges exist in F̃n. 2

Corollary 25 Let F̃n be the tilde-Fibonacci cube. Then |E(F̃1)| = 1, |E(F̃2)| = 3
and

|E(F̃n)| = |E(F̃n−1)|+ |E(F̃n−2)|+ fn+1,∀n ≥ 2.

Proof: From the proof of Proposition 24, F̃1 has 1 edge and F̃2 has 3 edges. Moreover,
|E(F̃n)| is the sum of |E(F̃n−1)| with |E(F̃n−2)|, plus one edge for each vertex in
F̃n−1, i.e. fn+1, by Proposition. 3. 2

By solving the recurrence in Corollary 25, we find the following exact solution

|E(F̃n)| = (n+ 1)fn+3 + (n− 2)fn+1

5

(Sequence A023610 in [17] for |E(F̃n+1|).
Since the number of vertices of F̃n is fn+2, from the previous formula it follows

that the tilde-Fibonacci cube has O(N logN) edges, where N is the number of ver-
tices, as for the tilde-hypercube (see Equation (1)).

To compare the number of edges of the Fibonacci cube and the hypercube, in [11]
the authors prove that the ratio between the number of edges EF (N) and EQ(N) in
the Fibonacci cube and the hypercube with N vertices, respectively, is asymptotically
bounded by 0.79 < EF (N)/EQ(N) < 0.80. In analogy with this result, by using the
same method as in [11], we have the following corollary.

Corollary 26 Let ẼF (N) and ẼQ(N) be the number of edges of the tilde-Fibonacci
cube and of the tilde-hypercube with N vertices, respectively. Then, their ratio is
asymptotically bounded by

0.85 <
ẼF (N)

ẼQ(N)
< 0.86

Proof: By Equation (1) and Proposition 3, ẼQ(fn+2) = fn+2(3 log fn+2 − 1)/4 and
by Corollary 25, ẼF (fn+2) = ((n + 1)fn+3 + (n − 2)fn+1)/5. By considering
ẼF (fn+2)/ẼQ(fn+2) asymptotically, the thesis follows. 2

This proves that the number of edges of the tilde-Fibonacci cube is about 1/7 less
than the number of edges of the tilde-hypercube, with fixed number of vertices. The ra-
tio is just slightly higher than in the Hamming case. This fact is not surprising because
the swap operation adds new edges, but, on the other hand, it shortens the average dis-
tances because a swap corresponds to two replacement operations. More formally, we
have the following remark.
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n 4 5 6 7 8 9 10 11 12 13 14 15 16

|V (Qn)|=|V (Q̃n)| 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

|E(Qn)| 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288

|E(Q̃n)| 44 112 272 640 1472 3328 7424 16384 35840 77824 167936 360448 770048

|V (Q̃n(11100))| 16 31 60 116 224 432 833 1606 3096 5968 11504 22175 42744

|E(Q̃n(11100))| 44 106 245 550 1208 2609 5569 11773 24691 51440 106566 219696 451005

R∼ (11100) 1 0,99 0,98 0,97 0,96 0,96 0,95 0,95 0,944 0,941 0,939 0,937 0,935

|V (Qn(1010))| 15 28 53 100 188 354 667 1256 2365 4454 8388 15796 29747

|E(Qn(1010))| 28 62 138 299 632 1323 2746 5645 11520 23377 47192 94830 189808

RH (1010) 0,96 0,92 0,91 0,90 0,89 0,88 0,88 0,87 0,869 0,866 0,863 0,861 0,859

Table 1: Vertices and edges cardinality and ratio of some cubes of order n = 4, . . . , 16

Remark 27 In [11] it is proven that the diameter d(Fn) is n and that the maxi-
mal distance involves the words (10)n/2 and (01)n/2 for even n, and (01)bn/2c0 and
(10)bn/2c1 for odd n. If the tilde-distance is considered, then d(F̃n) = dn/2e. Indeed,
the same words have maximal tilde-distance and the minimal tilde-transformation from
one to the other consists of n/2 swaps for even n and bn/2c swaps and one replace-
ment for odd n.

6 Conclusion and future work
In this paper we have introduced the tilde-hypercube and the tilde-Fibonacci cube as
a generalization of the corresponding classical notions, with the tilde-distance in place
of the Hamming one.

We have shown that, as in the classical case, the tilde-hypercube and the tilde-
Fibonacci cube can be recursively defined.

This made it possible to provide recursive and closed formulas for their number
of edges with respect to the order. We used such results to quantify how many edges
the tilde-Fibonacci cube has compared to the tilde-hypercube with the same number of
vertices, and it turned out that his value is very close to the classical case. However,
the investigation definitely deserves some deepening, since the hypercubes and the
tilde-hypercubes are defined on different distances, which are supposed to be used for
different applications.

Further, we have considered the hypercubes avoiding some special words, i.e.,
1010 and 11100. The hypercube Qn(1010) is an isometric subgraph of Qn, whereas
Q̃n(1010) is not an isometric subgraph of Q̃n. On the contrary, the tilde-hypercube
Q̃n(11100) is a isometric subgraph of Q̃n, whereasQn(11100) is not an isometric sub-
graph ofQn (cf. Propositions 13 and 20). Table 1 resumes the first values of the number
of vertices and edges of Qn, Q̃n, Q̃n(11100) and Qn(1010). Furthermore, for each n,
the value ofRH(1010) at column n is the ratio between |E(Qn(1010))| and the number
of edges of the hypercube having a number of vertices equal to N = |V (Qn(1010))|,
i.e. (N logN)/2 (cf. Proposition 3). Moreover, for each n, the value of R∼(11100)
at column n is the ratio between |E(Q̃n(11100))| and the number of edges of the
tilde-hypercube having a number of vertices equal to N = |V (Q̃n(11100))|, that is
N(3 logN − 1)/4 (cf. Equation 1).

We guess that both Fibonacci cubes and tilde-Fibonacci cubes are the best isometric
cubes avoiding a word in terms of reduction of the number of edges, but at the moment
the investigation is too germinal. We plan to continue the research in this direction
and, above all, to study in deep structural and topological properties of tilde-Fibonacci
cubes.
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[12] Ilić, A., Klavžar, S., Rho, Y.: Generalized Fibonacci cubes. Discrete Math.
312(1), 2–11 (2012)
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