Skip to main content

Operational Complexity: NFA-to-DFA Trade-Off

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2023)

Abstract

We examine operational complexity assuming that the arguments are given as nondeterministic finite automata and the resulting language is represented by a deterministic finite automaton. We show that the known upper bounds for Boolean operations and concatenation are met by ternary languages, and we prove that they are asymptotically tight in the binary case. For the cut and square operations, we get tight upper bounds \(2^{m-1}(2^n+1)\) and \(\frac{3}{4}2^{2n}\), respectively. Our witnesses are described over a four-letter alphabet for cut, and a ten-letter alphabet for square. We also show that the tight upper bound on the syntactic complexity of a language given by an n-state NFA is \(2^{n^2}\). For the square root operation, we provide a lower bound \(2^{n^2-n}\) and an upper bound \(2^{n^2}\).

M. Hospodár—This publication was supported by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF - Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.

M. Hospodár and G. Jirásková—Supported by the Slovak Grant Agency for Science (VEGA) under contract 2/0096/23 “Automata and Formal Languages: Descriptional and Computational Complexity”.

J. Jirásek and J. Šebej—Supported by the Slovak Grant Agency for Science (VEGA) under contract 1/0177/21 “Descriptional and Computational Complexity of Automata and Algorithms”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.W.: Cuts in regular expressions. In: Béal, M., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 70–81. Springer (2013). https://doi.org/10.1007/978-3-642-38771-5_8

  2. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010). https://doi.org/10.25596/jalc-2010-071

  3. Brzozowski, J.A., Szykuła, M., Ye, Y.: Syntactic complexity of regular ideals. Theory Comput. Syst. 62(5), 1175–1202 (2017). https://doi.org/10.1007/s00224-017-9803-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002). https://doi.org/10.25596/jalc-2002-303

  5. Caron, P., Hamel-De le Court, E., Luque, J.G., Patrou, B.: New tools for state complexity. Discret. Math. Theor. Comput. Sci. 22(1) (2020). https://doi.org/10.23638/DMTCS-22-1-9

  6. Drewes, F., Holzer, M., Jakobi, S., van der Merwe, B.: Tight bounds for cut-operations on deterministic finite automata. Fundam. Inform. 155(1–2), 89–110 (2017). https://doi.org/10.3233/FI-2017-1577

    Article  MathSciNet  MATH  Google Scholar 

  7. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting from the cut operation. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 190–202. Springer (2019). https://doi.org/10.1007/978-3-030-13435-8_14

  8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.org/10.1142/S0129054103002199

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison-Wesley, Languages and Computation (1979)

    Google Scholar 

  10. Hospodár, M., Olejár, V.: The cut operation in subclasses of convex languages (extended abstract). In: Caron, P., Mignot, L. (eds.) CIAA 2022. LNCS, vol. 13266, pp. 152–164. Springer (2022). https://doi.org/10.1007/978-3-031-07469-1_12

  11. Jirásek, J.Š., Jirásková, G., Szabari, A.: Operations on self-verifying finite automata. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 231–261. Springer (2015). https://doi.org/10.1007/978-3-319-20297-6_16

  12. Jirásek, J., Jr., Jirásková, G., Šebej, J.: Operations on unambiguous finite automata. Int. J. Found. Comput. Sci. 29(5), 861–876 (2018). https://doi.org/10.1142/S012905411842008X

    Article  MathSciNet  MATH  Google Scholar 

  13. Jirásková, G., Krajňáková, I.: NFA-to-DFA trade-off for regular operations. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 184–196. Springer (2019). https://doi.org/10.1007/978-3-030-23247-4_14

  14. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite automata. Inf. Comput. 253, 36–63 (2017). https://doi.org/10.1016/j.ic.2016.12.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput. Sci. 449, 85–92 (2012). https://doi.org/10.1016/j.tcs.2012.05.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)

    MATH  Google Scholar 

  17. Myhill, J.: Finite automata and representation of events. Wright Air Development Center Technical Report, pp. 57–624 (1957)

    Google Scholar 

  18. Rampersad, N.: The state complexity of \({L}^2\) and \({L}^k\). Inf. Process. Lett. 98(6), 231–234 (2006). https://doi.org/10.1016/j.ipl.2005.06.011

    Article  MATH  Google Scholar 

  19. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theor. Comput. Sci. 383(2–3), 140–152 (2007). https://doi.org/10.1016/j.tcs.2007.04.015

    Article  MathSciNet  MATH  Google Scholar 

  20. Sipser, M.: Introduction to the theory of computation. Cengage Learning (2012)

    Google Scholar 

  21. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1: Word, Language, Grammar, pp. 41–110. Springer (1997). https://doi.org/10.1007/978-3-642-59136-5_2

  22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.org/10.1016/0304-3975(92)00011-F

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We would like to thank Ivana Krajňáková for her wide and long-term contribution to some parts of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Jirásková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hospodár, M., Jirásek, J., Jirásková, G., Šebej, J. (2023). Operational Complexity: NFA-to-DFA Trade-Off. In: Bordihn, H., Tran, N., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2023. Lecture Notes in Computer Science, vol 13918. Springer, Cham. https://doi.org/10.1007/978-3-031-34326-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34326-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34325-4

  • Online ISBN: 978-3-031-34326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics