Skip to main content

Explainable AI for Medical Event Prediction for Heart Failure Patients

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13897))

Included in the following conference series:

  • 1232 Accesses

Abstract

The past decade has witnessed significant progress in deploying AI in the medical field. However, most AI models are considered black-boxes, making predictions neither understandable nor interpretable by humans. This limitation is especially significant when they contradict clinicians’ expectations based on medical knowledge. This can lead to a lack of trust in the model. In this work, we propose a pipeline to explain AI models. We used a previously devised Neural Network model to present our approach. It predicts the daily risk for patients with heart failure and is a part of a Decision Support System. In our pipeline, we deployed DeepSHAP algorithm to receive global and local explanations. With a global explanation, we defined the most important features in the model and their influence on the prediction. With local explanation, we analyzed individual observations and explained why a specific prediction was made. To validate the clinical relevance of our results, we consulted them with medical experts and made a literature review. Moreover, we described how the proposed pipeline can be integrated into Decision Support Systems. With the above tools, medical personnel can analyze the root of decisions and have insights into how medical parameters should be changed to improve the patient’s health state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, K.F., Fonarow, G.C., Emerman, C.L., et al.: Characteristics and outcomes of patients hospitalized for heart failure in the united states: Rationale, design, and preliminary observations from the first 100, 000 cases in the acute decompensated heart failure national registry (ADHERE). Am. Heart J. 149(2), 209–216 (2005). https://doi.org/10.1016/j.ahj.2004.08.005

    Article  Google Scholar 

  2. Amann, J., Blasimme, A., Vayena, E., et al.: Explainability for artificial intelligence in healthcare. BMC Med. Inform. Decis. Mak. 20, 310 (2020)

    Article  Google Scholar 

  3. Bundgaard, J.S., Thune, J.J., Torp-Pedersen, C., et al.: Self-reported health status and the associated risk of mortality in heart failure: the DANISH trial. J. Psychosom. Res. 137, 110220 (2020). https://doi.org/10.1016/j.jpsychores.2020.110220

    Article  Google Scholar 

  4. Chen, Y., Qi, B.: Representation learning in intraoperative vital signs for heart failure risk prediction. BMC Med. Inform. Decis. Mak. 19, 260 (2019)

    Article  Google Scholar 

  5. Costanzo, M.R., Guglin, M.E., Saltzberg, M.T., et al.: Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 49(6), 675–683 (2007). https://doi.org/10.1016/j.jacc.2006.07.073

    Article  Google Scholar 

  6. Dave, D., Naik, H., Singhal, S., Patel, P.: Explainable AI meets healthcare: a study on heart disease dataset. CoRR abs/2011.03195 (2020)

    Google Scholar 

  7. Gontarska, K., Wrazen, W., Beilharz, J., Schmid, R., Thamsen, L., Polze, A.: Predicting medical interventions from vital parameters: towards a decision support system for remote patient monitoring. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 293–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_33

    Chapter  Google Scholar 

  8. Heinze, T., Wierschke, R., Schacht, A., von Löwis, M.: A hybrid artificial intelligence system for assistance in remote monitoring of heart patients. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6679, pp. 413–420. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-21222-2_50

    Chapter  Google Scholar 

  9. Jenkins, S.: Sports science handbook: V. 1. Multi Science Publishing (2005)

    Google Scholar 

  10. Jia, Y., McDermid, J., Habli, I.: Enhancing the value of counterfactual explanations for deep learning. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 389–394. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_46

    Chapter  Google Scholar 

  11. Koehler, F., Koehler, K., Deckwart, O., et al.: Efficacy of telemedical interventional management in patients with heart failure (tim-hf2): a randomised, controlled, parallel-group, unmasked trial. Lancet (2018)

    Google Scholar 

  12. Kopitar, L., Cilar, L., Kocbek, P., Stiglic, G.: Local vs. global interpretability of machine learning models in type 2 diabetes mellitus screening. In: Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G. (eds.) KR4HC/TEAAM -2019. LNCS (LNAI), vol. 11979, pp. 108–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37446-4_9

    Chapter  Google Scholar 

  13. Kumar, P.: Kumar & clark’s medical management and therapeutics. W B Saunders (2011)

    Google Scholar 

  14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Adv Neural Inf Process Systs 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  15. Miller, W.L.: Fluid volume overload and congestion in heart failure. Circ. Heart Fail 9(8) (2016). https://doi.org/10.1161/circheartfailure.115.002922

  16. Moreno-Sanchez, P.A.: Development of an explainable prediction model of heart failure survival by using ensemble trees. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4902–4910 (2020)

    Google Scholar 

  17. Pawar, U., O’Shea, D., Rea, S., O’Reilly, R.: Explainable AI in healthcare. In: 2020 Int. Conf. Cyber Situational Aware. Data Anal. Assess. CyberSA, pp. 1–2 (2020)

    Google Scholar 

  18. Samek, W., Binder, A., Montavon, G., et al.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017). https://doi.org/10.1109/TNNLS.2016.2599820

    Article  MathSciNet  Google Scholar 

  19. Shen, L., Margolies, L.R., Rothstein, J.H., et al.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9, 12495 (2019)

    Article  Google Scholar 

  20. Stegmann, T., Koehler, K., Wachter, R., et al.: Heart failure patients with atrial fibrillation benefit from remote patient management: insights from the TIM-HF2 trial. ESC Heart Fail. 7(5), 2516–2526 (2020). https://doi.org/10.1002/ehf2.12819

    Article  Google Scholar 

  21. Thom, T., Haase, N., Rosamond, W., et al.: Heart disease and stroke statistics—2006 update. Circulation 113(6) (2006). https://doi.org/10.1161/circulationaha.105.171600

  22. Tian, J., Yuan, Y., Shen, M., et al.: Association of resting heart rate and its change with incident cardiovascular events in the middle-aged and older Chinese. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-43045-5

  23. Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable AI, p. 1–15. ACM (2019)

    Google Scholar 

  24. Zhang, D., Wang, W., Li, F.: Association between resting heart rate and coronary artery disease, stroke, sudden death and noncardiovascular diseases: a meta-analysis. CMAJ 188(15), E384–E392 (2016). https://doi.org/10.1503/cmaj.160050

    Article  Google Scholar 

Download references

Acknowledgment

We thank Prof. Dr. med. Friedrich Köhler and his team for the access to the database and valuable feedback regarding our evaluation. This research has been supported by the Federal Ministry for Economic Affairs and Energy of Germany as part of the program Smart Data (01MD19014C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weronika Wrazen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wrazen, W., Gontarska, K., Grzelka, F., Polze, A. (2023). Explainable AI for Medical Event Prediction for Heart Failure Patients. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics