Skip to main content

Learning EKG Diagnostic Models with Hierarchical Class Label Dependencies

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Abstract

Electrocardiogram (EKG/ECG) is a key diagnostic tool to assess patient’s cardiac condition and is widely used in clinical applications such as patient monitoring, surgery support, and heart medicine research. With recent advances in machine learning (ML) technology there has been a growing interest in the development of models supporting automatic EKG interpretation and diagnosis based on past EKG data. The problem can be modeled as multi-label classification (MLC), where the objective is to learn a function that maps each EKG reading to a vector of diagnostic class labels reflecting the underlying patient condition at different levels of abstraction. In this paper, we propose and investigate an ML model that considers class-label dependency embedded in the hierarchical organization of EKG diagnoses to improve the EKG classification performance. Our model first transforms the EKG signals into a low-dimensional vector, and after that uses the vector to predict different class labels with the help of the conditional tree structured Bayesian network (CTBN) that is able to capture hierarchical dependencies among class variables. We evaluate our model on the publicly available PTB-XL dataset. Our experiments demonstrate that modeling of hierarchical dependencies among class variables improves the diagnostic model performance under multiple classification performance metrics as compared to classification models that predict each class label independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aziz, S., Ahmed, S., Alouini, M.S.: ECG-based machine-learning algorithms for heartbeat classification. Sci. Rep. 11, 18738 (2021)

    Article  Google Scholar 

  2. Batal, I., Hong, C., Hauskrecht, M.: An efficient probabilistic framework for multi-dimensional classification. In: Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management - CIKM 2013 (2013)

    Google Scholar 

  3. Bulusu, S.C., Faezipour, M., Ng, V., Nourani, M., Tamil, L.S., Banerjee, S.: Transient st-segment episode detection for ECG beat classification. In: 2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA) (2011)

    Google Scholar 

  4. Darmawahyuni, A., et al.: Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification. PeerJ. Comput. Sci. 8, e825 (2022)

    Article  Google Scholar 

  5. Di Marco, L.Y., Chiari, L.: A wavelet-based ECG delineation algorithm for 32-bit integer online processing. Biomed. Eng. Online 10, 23 (2011)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Ismail Fawaz, H., et al.: InceptionTime: finding alexnet for Time Series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

    Article  MathSciNet  Google Scholar 

  9. Malakouti, S., Hauskrecht, M.: Hierarchical adaptive multi-task learning framework for patient diagnoses and diagnostic category classification. In: Proceedings, IEEE International Conference on Bioinformatics and Biomedicine, 2019, 19323030 (2019)

    Google Scholar 

  10. Moody, B., Moody, G., Villarroel, M., Clifford, G.D., Silva, I.: MIMIC-III Waveform Database (version 1.0). PhysioNet (2020)

    Google Scholar 

  11. Moody, G.B., Mark, R.G.: The impact of the MIT-BiH Arrhythmia Database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  12. Ravanelli, M., Bengio, Y.: Speaker recognition from raw waveform with SincNet. In: 2018 IEEE Spoken Language Technology Workshop (SLT) (2018)

    Google Scholar 

  13. Read, J., Pfahringer, B., Holmes, G., et al.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ribeiro, A.H., Ribeiro, M.H., Paixão, G.M.M., et al.: Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020)

    Article  Google Scholar 

  15. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based Electroencephalography Analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  16. Sharma, L.D., Sunkaria, R.K.: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. SIViP 12(2), 199–206 (2017). https://doi.org/10.1007/s11760-017-1146-z

    Article  Google Scholar 

  17. Śmigiel, S., Pałczyński, K., Ledziński, D.: ECG signal classification using Deep Learning techniques based on the PTB-XL dataset. Entropy 23(9), 1121 (2021)

    Article  Google Scholar 

  18. Śmigiel, S., Pałczyński, K., Ledziński, D.: Deep learning techniques in the classification of ECG signals using R-peak detection based on the PTB-XL dataset. Sensors 21(24), 8174 (2021)

    Article  Google Scholar 

  19. Strodthoff, N., Wagner, P., Schaeffter, T., Samek, W.: Deep learning for ECG analysis: Benchmarks and insights from PTB-XL. IEEE J. Biomed. Health Inform. 25(5), 1519–1528 (2021)

    Article  Google Scholar 

  20. Wagner, P., Strodthoff, N., Bousseljot, R., Samek, W., Schaeffter, T.: PTB-XL, a large publicly available electrocardiography dataset (version 1.0.1). PhysioNet (2020)

    Google Scholar 

  21. Wang, Z., Yan, W., Oates, T.: Time Series classification from scratch with Deep Neural Networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN) (2017)

    Google Scholar 

  22. Westhuizen, J.V., Lasenby, J.: Techniques for visualizing LSTMs applied to electrocardiograms. arXiv:1705.08153: Machine Learning (2017)

  23. Zidelmal, Z., Amirou, A., Adnane, M., Belouchrani, A.: QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 107(3), 490–496 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The work presented in this paper was supported in part by NIH grants R01EB032752 and R01DK131586. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Hauskrecht, M. (2023). Learning EKG Diagnostic Models with Hierarchical Class Label Dependencies. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics