Abstract
Availability of diagnostic codes in Electronic Health Records (EHRs) is crucial for patient care as well as reimbursement purposes. However, entering them in the EHR is tedious, and some clinical codes may be overlooked. Given an incomplete list of clinical codes, we investigate the performance of ML methods on predicting the complete ones, and assess the added predictive value of including other clinical patient data in this task. We used the MIMIC-III dataset and frame the task of completing the clinical codes as a recommendation problem. We consider various autoencoder approaches plus two strong baselines; item co-occurrence and Singular Value Decomposition (SVD). Inputs are 1) a record’s known clinical codes, 2) the codes plus variables. The co-occurrence-based approach performed slightly better (F1 score = 0.26, Mean Average Precision [MAP] = 0.19) than the SVD (F1 = 0.24, MAP = 0.18). However, the adversarial autoencoder achieved the best performance when using the codes plus variables (F1 = 0.32, MAP = 0.25). Adversarial autoencoders performed best in terms of F1 and were equal to vanilla and denoising autoencoders in term of MAP. Using clinical variables in addition to the incomplete codes list, improves the predictive performance of the models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vagliano, I., Galke, L., Scherp, A.: Recommendations for item set completion: on the semantics of item co-occurrence with data sparsity, input size, and input modalities. Information Retrieval Journal 25, 269–305 (2022)
Galke, L., Mai, F., Vagliano, I., Scherp, A.: Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels. Proceedings 26th Conference on User Modeling, Adaptation and Personalization, pp. 197–205. ACM (2018)
Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-w.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Scientific Data 3, 160035 (2016)
Lovelace, J., Hurley, N.C., Haimovich, A.D., Mortazavi, B.J.: Dynamically Extracting Outcome-Specific Problem Lists from Clinical Notes with Guided Multi-Headed Attention. In: Finale, D.-V., Jim, F., Ken, J., David, K., Rajesh, R., Byron, W., Jenna, W. (eds.) Proceedings of the 5th Machine Learning for Healthcare Conference, vol. 126, pp. 245--270. PMLR, Proceedings of Machine Learning Research (2020)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. JMLR 11, 3371–3408 (2010)
Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. CoRR abs/1312.6114, (2013)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. pp. arXiv:1511.05644 (2015)
Bao, W., Lin, H., Zhang, Y., Wang, J., Zhang, S.: Medical code prediction via capsule networks and ICD knowledge. BMC Med. Inform. Decis. Mak. 21, 55 (2021)
Xu, K., Lam, M., Pang, J., Gao, X., Band, C., Mathur, P., Papay, F., Khanna, A.K., Cywinski, J.B., Maheshwari, K., Xie, P., Xing, E.P.: Multimodal Machine Learning for Automated ICD Coding. In: Finale, D.-V., Jim, F., Ken, J., David, K., Rajesh, R., Byron, W., Jenna, W. (eds.) Proceedings of the 4th Machine Learning for Healthcare Conference, vol. 106, pp. 197--215. Cambridge MA: JMLR, Ann Arbor, Michigan (2019)
Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9, 1735–1780 (1997)
Kazemi, S.M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S., Wu, S., Smyth, C., Poupart, P., Brubaker, M.A.: Time2Vec: Learning a Vector Representation of Time. CoRR abs/1907.05321, (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yordanov, T.R., Abu-Hanna, A., Ravelli, A.C., Vagliano, I. (2023). Autoencoder-Based Prediction of ICU Clinical Codes. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-34344-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34343-8
Online ISBN: 978-3-031-34344-5
eBook Packages: Computer ScienceComputer Science (R0)