Skip to main content

Autoencoder-Based Prediction of ICU Clinical Codes

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Abstract

Availability of diagnostic codes in Electronic Health Records (EHRs) is crucial for patient care as well as reimbursement purposes. However, entering them in the EHR is tedious, and some clinical codes may be overlooked. Given an incomplete list of clinical codes, we investigate the performance of ML methods on predicting the complete ones, and assess the added predictive value of including other clinical patient data in this task. We used the MIMIC-III dataset and frame the task of completing the clinical codes as a recommendation problem. We consider various autoencoder approaches plus two strong baselines; item co-occurrence and Singular Value Decomposition (SVD). Inputs are 1) a record’s known clinical codes, 2) the codes plus variables. The co-occurrence-based approach performed slightly better (F1 score = 0.26, Mean Average Precision [MAP] = 0.19) than the SVD (F1 = 0.24, MAP = 0.18). However, the adversarial autoencoder achieved the best performance when using the codes plus variables (F1 = 0.32, MAP = 0.25). Adversarial autoencoders performed best in terms of F1 and were equal to vanilla and denoising autoencoders in term of MAP. Using clinical variables in addition to the incomplete codes list, improves the predictive performance of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vagliano, I., Galke, L., Scherp, A.: Recommendations for item set completion: on the semantics of item co-occurrence with data sparsity, input size, and input modalities. Information Retrieval Journal 25, 269–305 (2022)

    Article  Google Scholar 

  2. Galke, L., Mai, F., Vagliano, I., Scherp, A.: Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels. Proceedings 26th Conference on User Modeling, Adaptation and Personalization, pp. 197–205. ACM (2018)

    Google Scholar 

  3. Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-w.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Scientific Data 3, 160035 (2016)

    Google Scholar 

  4. Lovelace, J., Hurley, N.C., Haimovich, A.D., Mortazavi, B.J.: Dynamically Extracting Outcome-Specific Problem Lists from Clinical Notes with Guided Multi-Headed Attention. In: Finale, D.-V., Jim, F., Ken, J., David, K., Rajesh, R., Byron, W., Jenna, W. (eds.) Proceedings of the 5th Machine Learning for Healthcare Conference, vol. 126, pp. 245--270. PMLR, Proceedings of Machine Learning Research (2020)

    Google Scholar 

  5. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. JMLR 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. CoRR abs/1312.6114, (2013)

    Google Scholar 

  7. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. pp. arXiv:1511.05644 (2015)

  8. Bao, W., Lin, H., Zhang, Y., Wang, J., Zhang, S.: Medical code prediction via capsule networks and ICD knowledge. BMC Med. Inform. Decis. Mak. 21, 55 (2021)

    Article  Google Scholar 

  9. Xu, K., Lam, M., Pang, J., Gao, X., Band, C., Mathur, P., Papay, F., Khanna, A.K., Cywinski, J.B., Maheshwari, K., Xie, P., Xing, E.P.: Multimodal Machine Learning for Automated ICD Coding. In: Finale, D.-V., Jim, F., Ken, J., David, K., Rajesh, R., Byron, W., Jenna, W. (eds.) Proceedings of the 4th Machine Learning for Healthcare Conference, vol. 106, pp. 197--215. Cambridge MA: JMLR, Ann Arbor, Michigan (2019)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  11. Kazemi, S.M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S., Wu, S., Smyth, C., Poupart, P., Brubaker, M.A.: Time2Vec: Learning a Vector Representation of Time. CoRR abs/1907.05321, (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetan R. Yordanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yordanov, T.R., Abu-Hanna, A., Ravelli, A.C., Vagliano, I. (2023). Autoencoder-Based Prediction of ICU Clinical Codes. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics