Skip to main content

Cosecure Domination: Hardness Results and Algorithms

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13889))

Included in the following conference series:

Abstract

For a simple graph \(G=(V,E)\) without any isolated vertex, a cosecure dominating set S of G satisfies two properties, (i) S is a dominating set of G, (ii) for every vertex \(v \in S\), there exists a vertex \(u \in V \setminus S\) such that \(uv \in E\) and \((S \setminus \{v\}) \cup \{u\}\) is a dominating set of G. The minimum cardinality of a cosecure dominating set of G is called the cosecure domination number of G and is denoted by \(\gamma _{cs}(G)\). The Minimum Cosecure Domination problem is to find a cosecure dominating set of a graph G of cardinality \(\gamma _{cs}(G)\). The decision version of the problem is known to be NP-complete for bipartite, planar, and split graphs. Also, it is known that the Minimum Cosecure Domination problem is efficiently solvable for proper interval graphs and cographs.

In this paper, we work on various important graph classes in an effort to reduce the complexity gap of the Minimum Cosecure Domination problem. We show that the decision version of the problem remains NP-complete for doubly chordal graphs, chordal bipartite graphs, star-convex bipartite graphs and comb-convex bipartite graphs. On the positive side, we give an efficient algorithm to compute the cosecure domination number of chain graphs, which is an important subclass of bipartite graphs. In addition, we show that the problem is linear-time solvable for bounded tree-width graphs. Further, we prove that the computational complexity of this problem varies from the classical domination problem.

Kusum—Research supported by University Grants Commission(UGC), India, under File No.: 1047/(CSIR-UGC NET DEC. 2017)

A. Pandey—Research supported by CRG project, Grant Number-CRG/2022/008333, Science and Engineering Research Board (SERB), India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araki, T., Yamanaka, R.: Secure domination in cographs. Discret. Appl. Math. 262, 179–184 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arumugam, S., Ebadi, K., Manrique, M.: Co-secure and secure domination in graphs. Util. Math. 94, 167–182 (2014)

    MathSciNet  Google Scholar 

  3. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inform. Process. Lett. 19(1), 37–40 (1984)

    Article  MathSciNet  Google Scholar 

  4. Boumediene Merouane, H., Chellali, M.: On secure domination in graphs. Inform. Process. Lett. 115(10), 786–790 (2015)

    Article  MathSciNet  Google Scholar 

  5. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree structure and maximum neighbourhood orderings. Discret. Appl. Math. 82(1–3), 43–77 (1998)

    Article  MathSciNet  Google Scholar 

  6. Cockayne, E.J., Grobler, P.J.P., Gründlingh, W.R., Munganga, J., van Vuuren, J.H.: Protection of a graph. Util. Math. 67, 19–32 (2005)

    MathSciNet  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Google Scholar 

  8. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in Graphs. DM, vol. 64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51117-3

    Book  Google Scholar 

  9. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Structures of Domination in Graphs. DM, vol. 66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58892-2

    Book  Google Scholar 

  10. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14(1–2), 87–108 (2008) (2007)

    Google Scholar 

  11. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. LNCS, vol. 6681, pp. 233–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21204-8_26

    Chapter  Google Scholar 

  12. Joseph, A., Sangeetha, V.: Bounds on co-secure domination in graphs. Int. J. Math. Trends Technol. 55(2), 158–164 (2018)

    Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  14. Kišek, A., Klavžar, S.: Correcting the algorithm for the secure domination number of cographs by Jha, Pradhan, and Banerjee. Inform. Process. Lett. 172, Paper No. 106155, 4 (2021)

    Google Scholar 

  15. Klostermeyer, W.F., Mynhardt, C.M.: Secure domination and secure total domination in graphs. Discuss. Math. Graph Theory 28(2), 267–284 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kusum, Pandey, A.: Complexity results on cosecure domination in graphs. In: Bagchi, A., Muthu, R. (eds.) Algorithms and Discrete Applied Mathematics. CALDAM 2023. LNCS, vol. 13947, pp. 335–347. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25211-2_26

  17. Kusum, Pandey, A.: Cosecure domination: Hardness results and algorithm (2023). https://doi.org/10.48550/arXiv.2302.13031

  18. Manjusha, P., Chithra, M.R.: Co-secure domination in Mycielski graphs. J. Comb. Math. Comb. Comput. 113, 289–297 (2020)

    MathSciNet  Google Scholar 

  19. Moscarini, M.: Doubly chordal graphs, Steiner trees, and connected domination. Networks 23(1), 59–69 (1993)

    Article  MathSciNet  Google Scholar 

  20. Müller, H., Brandstädt, A.: The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci. 53(2–3), 257–265 (1987)

    Article  MathSciNet  Google Scholar 

  21. Wang, H., Zhao, Y., Deng, Y.: The complexity of secure domination problem in graphs. Discuss. Math. Graph Theory 38(2), 385–396 (2018)

    Article  MathSciNet  Google Scholar 

  22. West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice hall, Upper Saddle River (2001)

    Google Scholar 

  23. Zou, Y.H., Liu, J.J., Chang, S.C., Hsu, C.C.: The co-secure domination in proper interval graphs. Discret. Appl. Math. 311, 68–71 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kusum, Pandey, A. (2023). Cosecure Domination: Hardness Results and Algorithms. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34347-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34346-9

  • Online ISBN: 978-3-031-34347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics