Skip to main content

Modular Quality-of-Service Analysis of Software Design Models for Cyber-Physical Systems

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2023)

Abstract

Emerging applications such as collaborative and autonomous cyber-physical systems (CPS) seek for innovative techniques that support Quality-of-Service (QoS) analysis as key concern to be considered. The objective of this paper is to complement the software design models with an approach that provides a set of modules that are (i) representative of multiple QoS-based properties, and (ii) equipped with strategies aimed to establish rules of interaction among them in a feedback loop fashion. We propose a novel methodology that builds upon the specification of QoS-based modules and enables the generation of design alternatives as outcome of an internal intertwining of different QoS analysis results for CPS. The approach is applied to a collaborative and autonomous network of sensors, and experimental results show that software designers are supported in the selection of design alternatives by quantitative information. A comparison with an integrated model is performed to show the advantages of our novel modular QoS-based analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Replication package: https://doi.org/10.5281/zenodo.7773975.

References

  1. Ali, A., et al.: It’s not a sprint, it’s a marathon: stretching multi-resource burstable performance in public clouds. In: International Middleware Conference, pp. 36–42 (2019)

    Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues, vol. 51, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  3. Bertoli, M., et al.: JMT: performance engineering tools for system modeling. Perf. Eval. Rev. 36(4), 10–15 (2009)

    Article  Google Scholar 

  4. Bock, F., et al.: Smart parking: using a crowd of taxis to sense on-street parking space availability. IEEE Trans. Intell. Transp. Syst. 21(2), 496–508 (2019)

    Article  Google Scholar 

  5. Bolch, G., et al.: Queueing Networks and Markov Chains - Modeling and Performance Evaluation with Computer Science Applications. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  6. Budgen, D.: Software Design. Pearson Education, London (2003)

    MATH  Google Scholar 

  7. Cámara, J., Silva, M., Garlan, D., Schmerl, B.: Explaining architectural design tradeoff spaces: a machine learning approach. In: Biffl, S., Navarro, E., Löwe, W., Sirjani, M., Mirandola, R., Weyns, D. (eds.) ECSA 2021. LNCS, vol. 12857, pp. 49–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86044-8_4

    Chapter  Google Scholar 

  8. Chung, L., et al.: Non-functional Requirements in Software Engineering, vol. 5. Springer, New York (2012)

    Google Scholar 

  9. Fadda, E., Plebani, P., Vitali, M.: Optimizing monitorability of multi-cloud applications. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 411–426. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_25

    Chapter  Google Scholar 

  10. Gazafrudi, S., Nikdel, M.: Various battery models for various simulation studies and applications. Renew. Sustain. Energy Rev. 32, 477–485 (2014)

    Article  Google Scholar 

  11. Gerasimou, S., Calinescu, R., Tamburrelli, G.: Synthesis of probabilistic models for quality-of-service software engineering. Autom. Softw. Eng. 25(4), 785–831 (2018). https://doi.org/10.1007/s10515-018-0235-8

    Article  Google Scholar 

  12. Haskins, B., et al.: Error cost escalation through the project life cycle. In: INCOSE Annual International Symposium, pp. 1723–1737 (2004)

    Google Scholar 

  13. Kounev, S., et al.: Introduction to queueing petri nets: modeling formalism, tool support and case studies. In: International Conference on Performance Engineering, pp. 9–18 (2012)

    Google Scholar 

  14. Lazowska, E.D., et al.: Quantitative System Performance - Computer System Analysis Using Queueing Network Models. Prentice Hall, Hoboken (1984)

    Google Scholar 

  15. LiKamWa, R., et al.: Energy characterization and optimization of image sensing toward continuous mobile vision. In: International Conference on Mobile Systems, Applications, and Services, pp. 69–82 (2013)

    Google Scholar 

  16. Lytra, I., et al.: Quality attributes use in architecture design decision methods: research and practice. Computing 102(2), 551–572 (2020)

    Article  MathSciNet  Google Scholar 

  17. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Sol. Energy 50(5), 399–405 (1993)

    Article  Google Scholar 

  18. Nazarenko, A.A., Camarinha-Matos, L.M.: Collaborative cyber-physical systems design approach: smart home use case. In: Camarinha-Matos, L.M., Ferreira, P., Brito, G. (eds.) DoCEIS 2021. IAICT, vol. 626, pp. 92–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78288-7_9

    Chapter  Google Scholar 

  19. Pinciroli, R., Trubiani, C.: Performance analysis of fault-tolerant multi-agent coordination mechanisms. IEEE Trans. Ind. Inform. (2023, Early Access)

    Google Scholar 

  20. Platzer, A.: The logical path to autonomous cyber-physical systems. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 25–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_2

    Chapter  Google Scholar 

  21. Rao, K.D., et al.: Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)

    Article  Google Scholar 

  22. Schneider, Y., Busch, A., Koziolek, A.: Using informal knowledge for improving software quality trade-off decisions. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 265–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00761-4_18

    Chapter  Google Scholar 

  23. Shi, H., et al.: How big service and internet of services drive business innovation and transformation. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) CAiSE 2022. LNCS, vol. 13295, pp. 517–532. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_30

    Chapter  Google Scholar 

  24. Trubiani, C., Mirandola, R.: Continuous rearchitecting of QoS models: collaborative analysis for uncertainty reduction. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 40–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65831-5_3

    Chapter  Google Scholar 

  25. Vale, G., et al.: Designing microservice systems using patterns: an empirical study on quality trade-offs. In: International Conference on Software Architecture, pp. 69–79 (2022)

    Google Scholar 

  26. Verginadis, Y., Kritikos, K., Patiniotakis, I.: Data and cloud polymorphic application modelling in multi-clouds and fog environments. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 449–464. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_27

    Chapter  Google Scholar 

  27. Vitali, M.: Towards greener applications: enabling sustainable-aware cloud native applications design. In: International Conference of Advanced Information Systems Engineering, pp. 93–108 (2022)

    Google Scholar 

  28. Woodside, C.M., et al.: The future of software performance engineering. In: Workshop on the Future of Software Engineering (FOSE), pp. 171–187 (2007)

    Google Scholar 

  29. Woodside, C.M., et al.: Transformation challenges: from software models to performance models. Softw. Syst. Model. 13(4), 1529–1552 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable feedback. This work has been partially funded by MUR PRIN project 2017TWRCNB SEDUCE, and the PNRR MUR project VITALITY (ECS00000041) Spoke 2 ASTRA - Advanced Space Technologies and Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Pinciroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinciroli, R., Mirandola, R., Trubiani, C. (2023). Modular Quality-of-Service Analysis of Software Design Models for Cyber-Physical Systems. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds) Advanced Information Systems Engineering. CAiSE 2023. Lecture Notes in Computer Science, vol 13901. Springer, Cham. https://doi.org/10.1007/978-3-031-34560-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34560-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34559-3

  • Online ISBN: 978-3-031-34560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics