Abstract
Currently, the robustness of most Wi-Fi sensing systems is very limited due to that the target’s reflection signal is quite weak and can be easily submerged by the ambient noise. To address this issue, we take advantage of the fact that Wi-Fi devices are commonly equipped with multiple antennas and introduce the beamforming technology to enhance the reflected signal as well as reduce the time-varying noise. We adopt the dynamic signal energy ratio for sub-carrier selection to solve the location dependency problem, based on which a robust respiration sensing system is designed and implemented. Experimental results show that when the distance between the target and the transceiver is 7 m, the mean absolute error of the respiration sensing system is less than 0.729 bpm and the corresponding accuracy reaches 94.79%, which outperforms the baseline methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and tracking system. In: Proceedings of IEEE INFOCOM, vol. 2, pp. 775–784. IEEE (2000)
Gao, R., et al.: Towards robust gesture recognition by characterizing the sensing quality of WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(1), 1–26 (2022)
Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)
Li, X., et al.: IndoTrack: device-free indoor human tracking with commodity Wi-Fi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3), 1–22 (2017)
Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., Cheng, J.: Tracking vital signs during sleep leveraging off-the-shelf WiFi. In: Proceedings of ACM MobiHoc, pp. 267–276 (2015)
Liu, X., Cao, J., Tang, S., Wen, J.: Wi-sleep: contactless sleep monitoring via WiFi signals. In: 2014 IEEE Real-Time Systems Symposium, pp. 346–355. IEEE (2014)
Niu, K., Zhang, F., Xiong, J., Li, X., Yi, E., Zhang, D.: Boosting fine-grained activity sensing by embracing wireless multipath effects. In: Proceedings of ACM CoNEXT, pp. 139–151 (2018)
Qian, K., Wu, C., Yang, Z., Liu, Y., Jamieson, K.: Widar: decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi. In: Proceedings of ACM MobiHoc, pp. 1–10 (2017)
Wang, H., et al.: Human respiration detection with commodity WiFi devices: do user location and body orientation matter? In: Proceedings of ACM UbiComp, pp. 25–36 (2016)
Wang, P., Guo, B., Xin, T., Wang, Z., Yu, Z.: TinySense: multi-user respiration detection using Wi-Fi CSI signals. In: IEEE 19th International Conference on e-Health Networking, Applications and Services, pp. 1–6 (2017)
Wang, X., Yang, C., Mao, S.: PhaseBeat: exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In: IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1230–1239. IEEE (2017)
Wang, X., Yang, C., Mao, S.: TensorBeat: tensor decomposition for monitoring multiperson breathing beats with commodity WiFi. ACM Trans. Intell. Syst. Technol. (TIST) 9(1), 1–27 (2017)
Wang, Z., Guo, B., Yu, Z., Zhou, X.: Wi-Fi CSI-based behavior recognition: from signals and actions to activities. IEEE Commun. Mag. 56(5), 109–115 (2018)
Wang, Z., Yu, Z., Lou, X., Guo, B., Chen, L.: Gesture-radar: a dual doppler radar based system for robust recognition and quantitative profiling of human gestures. IEEE Trans. Hum.-Mach. Syst. 51(1), 32–43 (2021)
Wu, C., Zhang, F., Hu, Y., Liu, K.R.: GaitWay: monitoring and recognizing gait speed through the walls. IEEE Trans. Mob. Comput. 20(6), 2186–2199 (2020)
Wu, D., et al.: FingerDraw: sub-wavelength level finger motion tracking with WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1), 1–27 (2020)
Wu, D., Zhang, D., Xu, C., Wang, H., Li, X.: Device-free WiFi human sensing: from pattern-based to model-based approaches. IEEE Commun. Mag. 55(10), 91–97 (2017)
Wu, D., Zhang, D., Xu, C., Wang, Y., Wang, H.: WiDir: walking direction estimation using wireless signals. In: Proceedings of ACM UbiComp, pp. 351–362 (2016)
Xin, T., Guo, B., Wang, Z., Li, M., Yu, Z., Zhou, X.: FreeSense: indoor human identification with Wi-Fi signals. In: Proceedings of IEEE GLOBECOM, pp. 1–7 (2016)
Xin, T., et al.: FreeSense: a robust approach for indoor human detection using Wi-Fi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3) (2018)
Youssef, M., Agrawala, A.: The Horus WLAN location determination system. In: Proceedings of ACM MobiSys, pp. 205–218 (2005)
Yu, N., Wang, W., Liu, A.X., Kong, L.: QGesture: quantifying gesture distance and direction with WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–23 (2018)
Zeng, Y., Liu, J., Xiong, J., Liu, Z., Wu, D., Zhang, D.: Exploring multiple antennas for long-range WiFi sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(4), 1–30 (2021)
Zeng, Y., Wu, D., Gao, R., Gu, T., Zhang, D.: FullBreathe: full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3), 1–19 (2018)
Zeng, Y., Wu, D., Xiong, J., Liu, J., Liu, Z., Zhang, D.: MultiSense: enabling multi-person respiration sensing with commodity WiFi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(3), 1–29 (2020)
Zeng, Y., Wu, D., Xiong, J., Yi, E., Gao, R., Zhang, D.: FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(3), 1–26 (2019)
Zhang, F., et al.: Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(2), 1–25 (2021)
Zhang, H., et al.: Understanding the mechanism of through-wall wireless sensing: a model-based perspective. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(4), 1–28 (2022)
Acknowledgment
This work is partially supported by the National Natural Science Foundation of China (No. 61960206008, 62072375, 62102322), and the Fundamental Research Funds for the Central Universities (No. D5000210786).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Song, W. et al. (2023). Robust Respiration Sensing Based on Wi-Fi Beamforming. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-34586-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34585-2
Online ISBN: 978-3-031-34586-9
eBook Packages: Computer ScienceComputer Science (R0)