Skip to main content

Robust Respiration Sensing Based on Wi-Fi Beamforming

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2022)

Abstract

Currently, the robustness of most Wi-Fi sensing systems is very limited due to that the target’s reflection signal is quite weak and can be easily submerged by the ambient noise. To address this issue, we take advantage of the fact that Wi-Fi devices are commonly equipped with multiple antennas and introduce the beamforming technology to enhance the reflected signal as well as reduce the time-varying noise. We adopt the dynamic signal energy ratio for sub-carrier selection to solve the location dependency problem, based on which a robust respiration sensing system is designed and implemented. Experimental results show that when the distance between the target and the transceiver is 7 m, the mean absolute error of the respiration sensing system is less than 0.729 bpm and the corresponding accuracy reaches 94.79%, which outperforms the baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and tracking system. In: Proceedings of IEEE INFOCOM, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  2. Gao, R., et al.: Towards robust gesture recognition by characterizing the sensing quality of WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(1), 1–26 (2022)

    Google Scholar 

  3. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)

    Article  Google Scholar 

  4. Li, X., et al.: IndoTrack: device-free indoor human tracking with commodity Wi-Fi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3), 1–22 (2017)

    Google Scholar 

  5. Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., Cheng, J.: Tracking vital signs during sleep leveraging off-the-shelf WiFi. In: Proceedings of ACM MobiHoc, pp. 267–276 (2015)

    Google Scholar 

  6. Liu, X., Cao, J., Tang, S., Wen, J.: Wi-sleep: contactless sleep monitoring via WiFi signals. In: 2014 IEEE Real-Time Systems Symposium, pp. 346–355. IEEE (2014)

    Google Scholar 

  7. Niu, K., Zhang, F., Xiong, J., Li, X., Yi, E., Zhang, D.: Boosting fine-grained activity sensing by embracing wireless multipath effects. In: Proceedings of ACM CoNEXT, pp. 139–151 (2018)

    Google Scholar 

  8. Qian, K., Wu, C., Yang, Z., Liu, Y., Jamieson, K.: Widar: decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi. In: Proceedings of ACM MobiHoc, pp. 1–10 (2017)

    Google Scholar 

  9. Wang, H., et al.: Human respiration detection with commodity WiFi devices: do user location and body orientation matter? In: Proceedings of ACM UbiComp, pp. 25–36 (2016)

    Google Scholar 

  10. Wang, P., Guo, B., Xin, T., Wang, Z., Yu, Z.: TinySense: multi-user respiration detection using Wi-Fi CSI signals. In: IEEE 19th International Conference on e-Health Networking, Applications and Services, pp. 1–6 (2017)

    Google Scholar 

  11. Wang, X., Yang, C., Mao, S.: PhaseBeat: exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In: IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1230–1239. IEEE (2017)

    Google Scholar 

  12. Wang, X., Yang, C., Mao, S.: TensorBeat: tensor decomposition for monitoring multiperson breathing beats with commodity WiFi. ACM Trans. Intell. Syst. Technol. (TIST) 9(1), 1–27 (2017)

    Google Scholar 

  13. Wang, Z., Guo, B., Yu, Z., Zhou, X.: Wi-Fi CSI-based behavior recognition: from signals and actions to activities. IEEE Commun. Mag. 56(5), 109–115 (2018)

    Article  Google Scholar 

  14. Wang, Z., Yu, Z., Lou, X., Guo, B., Chen, L.: Gesture-radar: a dual doppler radar based system for robust recognition and quantitative profiling of human gestures. IEEE Trans. Hum.-Mach. Syst. 51(1), 32–43 (2021)

    Article  Google Scholar 

  15. Wu, C., Zhang, F., Hu, Y., Liu, K.R.: GaitWay: monitoring and recognizing gait speed through the walls. IEEE Trans. Mob. Comput. 20(6), 2186–2199 (2020)

    Article  Google Scholar 

  16. Wu, D., et al.: FingerDraw: sub-wavelength level finger motion tracking with WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1), 1–27 (2020)

    Google Scholar 

  17. Wu, D., Zhang, D., Xu, C., Wang, H., Li, X.: Device-free WiFi human sensing: from pattern-based to model-based approaches. IEEE Commun. Mag. 55(10), 91–97 (2017)

    Article  Google Scholar 

  18. Wu, D., Zhang, D., Xu, C., Wang, Y., Wang, H.: WiDir: walking direction estimation using wireless signals. In: Proceedings of ACM UbiComp, pp. 351–362 (2016)

    Google Scholar 

  19. Xin, T., Guo, B., Wang, Z., Li, M., Yu, Z., Zhou, X.: FreeSense: indoor human identification with Wi-Fi signals. In: Proceedings of IEEE GLOBECOM, pp. 1–7 (2016)

    Google Scholar 

  20. Xin, T., et al.: FreeSense: a robust approach for indoor human detection using Wi-Fi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3) (2018)

    Google Scholar 

  21. Youssef, M., Agrawala, A.: The Horus WLAN location determination system. In: Proceedings of ACM MobiSys, pp. 205–218 (2005)

    Google Scholar 

  22. Yu, N., Wang, W., Liu, A.X., Kong, L.: QGesture: quantifying gesture distance and direction with WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–23 (2018)

    Google Scholar 

  23. Zeng, Y., Liu, J., Xiong, J., Liu, Z., Wu, D., Zhang, D.: Exploring multiple antennas for long-range WiFi sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(4), 1–30 (2021)

    Google Scholar 

  24. Zeng, Y., Wu, D., Gao, R., Gu, T., Zhang, D.: FullBreathe: full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3), 1–19 (2018)

    Google Scholar 

  25. Zeng, Y., Wu, D., Xiong, J., Liu, J., Liu, Z., Zhang, D.: MultiSense: enabling multi-person respiration sensing with commodity WiFi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(3), 1–29 (2020)

    Google Scholar 

  26. Zeng, Y., Wu, D., Xiong, J., Yi, E., Gao, R., Zhang, D.: FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(3), 1–26 (2019)

    Google Scholar 

  27. Zhang, F., et al.: Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(2), 1–25 (2021)

    Google Scholar 

  28. Zhang, H., et al.: Understanding the mechanism of through-wall wireless sensing: a model-based perspective. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(4), 1–28 (2022)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation of China (No. 61960206008, 62072375, 62102322), and the Fundamental Research Funds for the Central Universities (No. D5000210786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, W. et al. (2023). Robust Respiration Sensing Based on Wi-Fi Beamforming. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34586-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34585-2

  • Online ISBN: 978-3-031-34586-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics