Skip to main content

MM4Drone: A Multi-spectral Image and mmWave Radar Approach for Identifying Mosquito Breeding Grounds via Aerial Drones

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2022)

Abstract

Mosquitoes spread disases such as Dengue and Zika that affect a significant portion of the world population. One approach to hamper the spread of the disases is to identify the mosquitoes’ breeding places. Recent studies use drones to detect breeding sites, due to their low cost and flexibility. In this paper, we investigate the applicability of drone-based multi-spectral imagery and mmWave radios to discover breeding habitats. Our approach is based on the detection of water bodies. We introduce our Faster R-CNN-MSWD, an extended version of the Faster R-CNN object detection network, which can be used to identify water retention areas in both urban and rural settings using multi-spectral images. We also show promising results for estimating extreme shallow water depth using drone-based multi-spectral images. Further, we present an approach to detect water with mmWave radios from drones. Finally, we emphasize the importance of fusing the data of the two sensors and outline future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://landsat.gsfc.nasa.gov/data/.

  2. 2.

    https://github.com/you359/Keras-FasterRCNN.

  3. 3.

    https://github.com/amweerasekara/mmWave-IWR1843Boost-UART-Data-Recorder.

References

  1. National dengue control unit, Sri Lanka. https://www.epid.gov.lk/web/index.php

  2. Amarasinghe, A., Suduwella, C., Niroshan, L., Elvitigala, C., De Zoysa, K., Keppetiyagama, C.: Suppressing dengue via a drone system. In: 2017 17th International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 1–7. IEEE (2017)

    Google Scholar 

  3. Amarasinghe, A., Wijesuriya, V.B.: Drones vs dengue: a drone-based mosquito control system for preventing dengue. In: 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–6. IEEE (2020)

    Google Scholar 

  4. Andrade, G., et al.: Fighting back zika, chikungunya and dengue: detection of mosquito-breeding habitats using an unmanned aerial vehicle. IEEE CAS Student Design Competition 2018 (2017)

    Google Scholar 

  5. Bravo, D.T., et al.: Automatic detection of potential mosquito breeding sites from aerial images acquired by unmanned aerial vehicles. Comput. Environ. Urban Syst. 90, 101692 (2021). https://doi.org/10.1016/j.compenvurbsys.2021.101692, https://www.sciencedirect.com/science/article/pii/S0198971521000995

  6. Carrasco-Escobar, G., et al.: High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl. Trop. Dis. 13(1), e0007105 (2019)

    Article  Google Scholar 

  7. Case, E., Shragai, T., Harrington, L., Ren, Y., Morreale, S., Erickson, D.: Evaluation of unmanned aerial vehicles and neural networks for integrated mosquito management of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 57(5), 1588–1595 (2020). https://doi.org/10.1093/jme/tjaa078

  8. Centers for Disease Control and Prevention: Surveillance and control of aedes aegypti and aedes albopictus in the united states. http://www.cdc.gov/chikungunya/resources/vector-control.html. Accessed 11 April 2016

  9. Faraji, A., et al.: Toys or tools? utilization of unmanned aerial systems in mosquito and vector control programs. J. Econ. Entomol. 114(5), 1896–1909 (2021). https://doi.org/10.1093/jee/toab107

  10. Geyman, E.C., Maloof, A.C.: A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type. Earth Space Sci. 6(3), 527–537 (2019). https://doi.org/10.1029/2018EA000539

    Article  Google Scholar 

  11. Guo, J., Jin, M., He, Y., Wang, W., Liu, Y.: Dancing waltz with ghosts: measuring sub-mm-level 2d rotor orbit with a single mmwave radar. In: Proceedings of the 20th International Conference on Information Processing in Sensor Networks (co-located with CPS-IoT Week 2021), pp. 77–92 (2021)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Henriksen, S.: Radar-range equation. Proc. IEEE 63(5), 813–814 (1975). https://doi.org/10.1109/PROC.1975.9829

    Article  Google Scholar 

  14. Hess, D.W.: Introduction to RCS measurements. In: 2008 Loughborough Antennas and Propagation Conference, pp. 37–44 (2008). https://doi.org/10.1109/LAPC.2008.4516860

  15. Instruments, T.: (2017). https://training.ti.com/mmwave-water-vs-ground-classification-lab

  16. Iovescu, C., Rao, S.: The fundamentals of millimeter wave sensors. Texas Instruments, pp. 1–8 (2017)

    Google Scholar 

  17. Joshi, A., Miller, C.: Review of machine learning techniques for mosquito control in urban environments. Eco. Inform. 61, 101241 (2021)

    Article  Google Scholar 

  18. Lu, C.X., et al.: See through smoke: robust indoor mapping with low-cost mmwave radar. In: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, pp. 14–27 (2020)

    Google Scholar 

  19. Lyzenga, D.R., Malinas, N.P., Tanis, F.J.: Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006). https://doi.org/10.1109/TGRS.2006.872909

    Article  Google Scholar 

  20. Mahima, K.T.Y., et al.: Fighting dengue fever with aerial drones. In: International Conference on Embedded Wireless Systems and Networks (EWSN) (2022)

    Google Scholar 

  21. McFeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(1996). https://doi.org/10.1080/01431169608948714

  22. Minakshi, M., et al.: High-accuracy detection of malaria mosquito habitats using drone-based multispectral imagery and artificial intelligence (ai) algorithms in an agro-village peri-urban pastureland intervention site (akonyibedo) in unyama sub-county, gulu district, northern uganda. J. Public Health Epidemiol. 12(3), 202–217 (2020). https://doi.org/10.5897/JPHE2020.1213

    Article  Google Scholar 

  23. Mosquito Reviews: Statistics for mosquito-borne diseases & deaths. https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases/dengue (2022), https://www.worldmosquitoprogram.org. Accessed 20 May 2022

  24. Thalagal, N.: Health system cost for dengue control and management in colombo district, Sri Lanka. Dengue Tool Surveilance Project, Epidemiology Unit Ministry of Health (2013)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  26. Rohani, A., et al.: Habitat characterization and mapping of anopheles maculatus (theobald) mosquito larvae in malaria endemic areas in kuala lipis, pahang, malaysia. Southeast Asian J. Trop. Med. Public Health 41(4), 821–30 (2010)

    Google Scholar 

  27. Rossi, L., Backes, A., Souza, J.: Rain gutter detection in aerial images for aedes aegypti mosquito prevention. In: Anais do XVI Workshop de Visão Computacional, pp. 1–5. SBC (2020). https://doi.org/10.5753/WVC.2020.13474

  28. Sarira, T.V., Clarke, K.D., Weinstein, P., Koh, L.P., Lewis, M.M.: Rapid identification of shallow inundation for mosquito disease mitigation using drone-derived multispectral imagery. Geospat. Health 15, 1 (2020). https://doi.org/10.4081/gh.2020.851

    Article  Google Scholar 

  29. Senanayake, M., SK Jayasinghe, S., S Wijesundera, D., Manamperi, M.: Economic cost of hospitalized non-fatal paediatric dengue at the lady ridgeway hospital for children in Sri Lanka 43(2014)

    Google Scholar 

  30. Shui, H., Geng, H., Li, Q., Du, L., Du, Y.: A low-power high-accuracy urban waterlogging depth sensor based on millimeter-wave FMCW radar. Sensors 22(3), 1236 (2022)

    Article  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556 (2014)

  32. Stanton, M.C., Kalonde, P., Zembere, K., Spaans, R.H., Jones, C.M.: The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control? Malar. J. 20(1), 1–17 (2021). https://doi.org/10.1186/s12936-021-03759-2

    Article  Google Scholar 

  33. Stumpf, R.P., Holderied, K., Sinclair, M.: Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography 48(1part2), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

  34. Sutherland, A.: Mosquito management for ponds, fountains, and water gardens. UC IPM Retail Nursery & Garden Center IPM News 3 2 (2014). https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14396

  35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  36. Valdez-Delgado, K.M., et al.: Field effectiveness of drones to identify potential aedes aegypti breeding sites in household environments from tapachula, a dengue-endemic city in southern mexico. Insects 12(8) (2021). https://doi.org/10.3390/insects12080663, https://www.mdpi.com/2075-4450/12/8/663

  37. Vasconcelos, D., et al.: Counting mosquitoes in the wild: an internet of things approach. In: Proceedings of the Conference on Information Technology for Social Good, pp. 43–48 (2021)

    Google Scholar 

  38. Williams, G.M., Wang, Y., Suman, D.S., Unlu, I., Gaugler, R.: The development of autonomous unmanned aircraft systems for mosquito control. PLOS ONE 15(9), 1–16 (09 2020). https://doi.org/10.1371/journal.pone.0235548

  39. World Mosquito Program: Statistics for mosquito-borne diseases & deaths (2022). https://mosquitoreviews.com/learn/disease-death-statistics. Accessed 20 May 2022

Download references

Acknowledgements

This work has been partly funded by Digital Futures and the Swedish Research Council (Grant 2018-05024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Y. Mahima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahima, K.T.Y. et al. (2023). MM4Drone: A Multi-spectral Image and mmWave Radar Approach for Identifying Mosquito Breeding Grounds via Aerial Drones. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34586-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34585-2

  • Online ISBN: 978-3-031-34586-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics