Skip to main content

A Novel Feature Matching Method for Matching OpenStreetMap Buildings with Those of Reference Dataset

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13912))

Abstract

Numerous studies have attempted to assess the quality of OpenStreetMap's building data by comparing it to reference datasets. Map matching (feature matching) is a critical step in this method of quality assessment, involving the matching of polygons in the two datasets. Researchers commonly use two main polygon matching algorithms: 1) the buffer intersection method and 2) the centroid comparison method. While these methods are effective for the majority of OSM building footprints, they may not achieve high accuracy in complex situations. One possible reason is that both methods only consider the position of the OSM polygon compared to that of the reference polygon. To improve these matching algorithms and propose a more robust solution, this study proposes an algorithm that considers shape similarity (using average distance method) in addition to position similarity to better identify corresponding polygons in the two datasets. The experiment results for five cities in the Province of Quebec indicate that the proposed algorithm can reduce the matching error of previous map matching algorithms from approximately 8% to approximately 3%. Furthermore, the study found that the proposed polygon matching algorithm performs more accurately than previous methods when buildings consist of multiple polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Törnros, T., Dorn, H., Hahmann, S., Zipf, A.: Uncertainties of completeness measures in OpenStreetMap – a case study for buildings in a medium-sized German city. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3/W5, 353–357 (2015). https://doi.org/10.5194/isprsannals-II-3-W5-353-2015

    Article  Google Scholar 

  2. Neis, P., Goetz, M., Zipf, A.: Towards automatic vandalism detection in OpenStreetMap. ISPRS Int. J. Geo-Inf. 1, 315–332 (2012). https://doi.org/10.3390/ijgi1030315

    Article  Google Scholar 

  3. Lotfian, M., Ingensand, J., Brovelli, M.A.: The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13(14), 8087 (2021). https://doi.org/10.3390/su13148087

    Article  Google Scholar 

  4. Lotfian, M., Ingensand, J., Brovelli, M.A.: A framework for classifying participant motivation that considers the typology of citizen science projects. ISPRS Int. J. Geo-Inf. 9(12), 704 (2020). https://doi.org/10.3390/ijgi9120704

    Article  Google Scholar 

  5. Lotfian, M., Ingensand, J., Brovelli, M.A.: an Approach for Real-Time Validation of the Location of Biodiversity Observations Contributed in a Citizen Science Project. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W1-2022, 271–278 (2022). https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-271-2022

    Article  Google Scholar 

  6. Camboim, S., Bravo, J., Sluter, C.: An investigation into the completeness of, and the updates to, OpenStreetMap data in a heterogeneous area in Brazil. ISPRS Int. J. Geo-Inf. 4, 1366–1388 (2015). https://doi.org/10.3390/ijgi4031366

    Article  Google Scholar 

  7. Fan, H., Zipf, A., Fu, Q., Neis, P.: Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 28, 700–719 (2014). https://doi.org/10.1080/13658816.2013.867495

    Article  Google Scholar 

  8. Hacar, M., Kılıç, B., Şahbaz, K.: Analyzing OpenStreetMap road data and characterizing the behavior of contributors in Ankara. Turkey. ISPRS Int. J. Geo-Inf. 7, 400 (2018). https://doi.org/10.3390/ijgi7100400

    Article  Google Scholar 

  9. Fonte, C.C., et al.: Assessing VGI data quality. In: Mapping and the Citizen Sensor, pp. 137–163 (2017)

    Google Scholar 

  10. Sui, D., Elwood, S., Goodchild, M. (eds.): Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice. Springer Netherlands, Dordrecht (2013). https://doi.org/10.1007/978-94-007-4587-2

    Book  Google Scholar 

  11. Haklay, M.(Muki), Basiouka, S., Antoniou, V., Ather, A.: How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. Cartogr. J. 47, 315–322 (2010). https://doi.org/10.1179/000870410X12911304958827

  12. Moradi, M., Delavar, M.R., Moshiri, B.: A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided OWA operator: a case study of Tehran. Iran. Ann. GIS. 21, 209–222 (2015). https://doi.org/10.1080/19475683.2014.966858

    Article  Google Scholar 

  13. Moradi, M., Delavar, M.R., Moshiri, B.: A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory. Nat. Hazards 87(3), 1377–1398 (2017). https://doi.org/10.1007/s11069-017-2822-6

    Article  Google Scholar 

  14. Bertolotto, M., Mc-Ardle, G., Schoen-Phelan, B.: Volunteered and crowdsourced geographic information: The openstreetmap project. J. Spat. Inf. Sci. 20, 65–70 (2020). https://doi.org/10.5311/JOSIS.2020.20.659

    Article  Google Scholar 

  15. Antoniou, V., Morley, J., Haklay, M.: Web 2.0 geotagged photos: assessing the spatial dimensions of the phenomenon. Geomatica. 64, 99–110 (2010)

    Google Scholar 

  16. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007). https://doi.org/10.1007/s10708-007-9111-y

    Article  Google Scholar 

  17. Moradi, M., Roche, S., Mostafavi, M.A.: Exploring five indicators for the quality of OpenStreetMap road networks: a case study of Québec Canada. Geomatica. 31, 1–31 (2022). https://doi.org/10.1139/geomat-2021-0012

    Article  Google Scholar 

  18. Moradi, M.: Evaluating the quality of OSM roads and buildings in Quebec Province (2020)

    Google Scholar 

  19. Fan, H., Yang, B., Zipf, A., Rousell, A.: A polygon-based approach for matching OpenStreetMap road networks with regional transit authority data. Int. J. Geogr. Inf. Sci. 30, 748–764 (2016). https://doi.org/10.1080/13658816.2015.1100732

    Article  Google Scholar 

  20. Funke, S., Schirrmeister, R., Storandt, S.: Automatic extrapolation of missing road network data in OpenStreetMap. CEUR Workshop Proc. 1392, 27–35 (2015)

    Google Scholar 

  21. Funke, S., Storandt, S.: Automatic tag enrichment for points-of-interest in open street map. In: Brosset, D., Claramunt, C., Li, X., Wang, T. (eds.) Web and Wireless Geographical Information Systems. LNCS, vol. 10181, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55998-8_1

    Chapter  Google Scholar 

  22. Müller, F., Iosifescu, I., Hurni, L.: Assessment and visualization of OSM building footprint quality. In: Proceedings of the 27th International Cartographic Conference, Rio de Janeiro (2015)

    Google Scholar 

  23. Wang, M., Li, Q., Hu, Q., Zhou, M.: Quality analysis of open street map data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-2/W1, 155–158 (2013). https://doi.org/10.5194/isprsarchives-XL-2-W1-155-2013

    Article  Google Scholar 

  24. Zhou, Q., Tian, Y.: The use of geometric indicators to estimate the quantitative completeness of street blocks in OpenStreetMap. Trans. GIS. 1, 1550–1572 (2018). https://doi.org/10.1111/tgis.12486

    Article  Google Scholar 

  25. Xu, Y., Chen, Z., Xie, Z., Wu, L.: Quality assessment of building footprint data using a deep autoencoder network. Int. J. Geogr. Inf. Sci. 31, 1929–1951 (2017). https://doi.org/10.1080/13658816.2017.1341632

    Article  Google Scholar 

  26. Antoniou, V., Skopeliti, A.: Measures and indicators of VGI quality: an overview. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3/W5, 345–351 (2015). https://doi.org/10.5194/isprsannals-II-3-W5-345-2015

    Article  Google Scholar 

  27. Tveite, H., Langaas, S.: An accuracy assessment method for geographical line data sets based on buffering. Int. J. Geogr. Inf. Sci. 13, 27–47 (1999). https://doi.org/10.1080/136588199241445

    Article  Google Scholar 

  28. Touya, G., Antoniou, V., OlteanuRaimond, A.-M., Van Damme, M.-D.: Assessing crowdsourced POI quality: combining methods based on reference data, history, and spatial relations. ISPRS Int. J. Geo-Inf. 6, 80 (2017). https://doi.org/10.3390/ijgi6030080

    Article  Google Scholar 

  29. Hochmair, H.H., Zielstra, D., Neis, P.: Assessing the completeness of bicycle trail and lane features in OpenStreetMap for the United States. Trans. GIS. 19, 63–81 (2015). https://doi.org/10.1111/tgis.12081

    Article  Google Scholar 

  30. Hecht, R., Kunze, C., Hahmann, S.: Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int. J. Geo-Inf. 2, 1066–1091 (2013). https://doi.org/10.3390/ijgi2041066

    Article  Google Scholar 

  31. Jin, M., Claramunt, C., Wang, T.: A map-matching approach for travel behavior analysis. In: 2017 4th International Conference on System Informatics, ICSAI 2017. 2018-January, pp. 1405–1410 (2017). https://doi.org/10.1109/ICSAI.2017.8248506

  32. Du, H., Alechina, N., Jackson, M., Hart, G.: A method for matching crowd-sourced and authoritative geospatial data. Trans. GIS. 21, 406–427 (2017). https://doi.org/10.1111/tgis.12210

    Article  Google Scholar 

  33. Senaratne, H., Mobasheri, A., Ali, A.L., Capineri, C., Haklay, M. (Muki): A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 31, 139–167 (2017). https://doi.org/10.1080/13658816.2016.1189556

  34. Mooney, P., Corcoran, P.: The annotation process in OpenStreetMap. Trans. GIS. 16, 561–579 (2012). https://doi.org/10.1111/j.1467-9671.2012.01306.x

    Article  Google Scholar 

  35. Koukoletsos, T.: A Framework for Quality Evaluation of VGI linear datasets (2012)

    Google Scholar 

  36. Jacobs, K.T.: Quality Assessment of Volunteered Geographic Information : An Investigation into the Ottawa-Gatineau OpenStreetMap Database, (2018)

    Google Scholar 

  37. Zhou, X., Chen, Z., Zhang, X., Ai, T.: Change detection for building footprints with different levels of detail using combined shape and pattern analysis. ISPRS Int. J. Geo-Inf. 7(10), 406 (2018). https://doi.org/10.3390/ijgi7100406

    Article  Google Scholar 

  38. Hung, K.-C., Kalantari, M., Rajabifard, A.: Assessing the quality of building footprints on OpenStreetMap: a case study in Taiwan. In: Smart World, p. 237 (2016)

    Google Scholar 

  39. Huerta, J., Schade, S., Granell, C. (eds.): Connecting a Digital Europe Through Location and Place. LNGC, Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03611-3

    Book  Google Scholar 

  40. Copes, N.: A Planning based Evaluation of Spatial Data Quality of OpenStreetMap Building Footprints in Canada (2019)

    Google Scholar 

  41. Siebritz, L.-A.: Assessing the accuracy of openstreetmap data in south africa for the purpose of integrating it with authoritative data (2014). https://open.uct.ac.za/handle/11427/9148

  42. Zhuo, X., Fraundorfer, F., Kurz, F., Reinartz, P.: Optimization of OpenStreetMap building footprints based on semantic information of oblique UAV images. Remote Sens. 10(4), 624 (2018). https://doi.org/10.3390/rs10040624

    Article  Google Scholar 

  43. ISO: ISO 19157: Geographic information-data quality (2013)

    Google Scholar 

  44. Gil de la Vega, P., Ariza-López, F.J., Mozas-Calvache, A.T.: Models for positional accuracy assessment of linear features: 2D and 3D cases. Surv. Rev. 48(350), 347–360 (2016). https://doi.org/10.1080/00396265.2015.1113027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moradi, M., Roche, S., Mostafavi, M.A. (2023). A Novel Feature Matching Method for Matching OpenStreetMap Buildings with Those of Reference Dataset. In: Mostafavi, M.A., Del Mondo, G. (eds) Web and Wireless Geographical Information Systems. W2GIS 2023. Lecture Notes in Computer Science, vol 13912. Springer, Cham. https://doi.org/10.1007/978-3-031-34612-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34612-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34611-8

  • Online ISBN: 978-3-031-34612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics