Skip to main content

Lung Cancer Detection from Histopathological Images Using Deep Learning

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

Computed tomography (CT) is critical for identifying tumors and detecting lung cancer. As was the case in the recent past, we wish to incorporate a well-educated, profound learning algorithm to recognize and categorize lung nodules based on clinical CT imagery. This investigation used open-source datasets and data from multiple centers. Deep learning is a widely used and powerful technique for pattern recognition and categorization. However, because large datasets of medical images are not always accessible, there are few deep structured applications used in diagnostic medical imaging. In this research, a deep learning model was created to identify lung tumors from histopathological images. Our proposed Deep Learning (DL) model accuracy was 95% and loss was 0.158073%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lung cancer. www.verywellhealth.com/lung-cancer-overview-4581940

  2. Alturkistani, H.A., Tashkandi, F.M., Mohammedsaleh, Z.M.: Histological stains: a literature review and case study. Global J. Health Sci. 8(3), 72 (2016)

    Article  Google Scholar 

  3. Anirudh, R., Thiagarajan, J.J., Bremer, T., Kim, H.: Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data. In: Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785, p. 978532. International Society for Optics and Photonics (2016)

    Google Scholar 

  4. Van den Bent, M.J.: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol. 120(3), 297–304 (2010)

    Article  Google Scholar 

  5. Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and colon cancer histopathological image dataset (lc25000). arXiv preprint arXiv:1912.12142 (2019)

  6. Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)

    Article  Google Scholar 

  7. Cooper, L.A., Kong, J., Gutman, D.A., Dunn, W.D., Nalisnik, M., Brat, D.J.: Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images. Lab. Invest. 95(4), 366–376 (2015)

    Article  Google Scholar 

  8. Da Nóbrega, R.V.M., Peixoto, S.A., da Silva, S.P.P., Rebouças Filho, P.P.: Lung nodule classification via deep transfer learning in CT lung images. In: 2018 IEEE 31st International Symposium on Computer-based Medical Systems (CBMS), pp. 244–249. IEEE (2018)

    Google Scholar 

  9. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  10. Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P.A.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2016)

    Article  Google Scholar 

  11. Gao, F., Huang, T., Wang, J., Sun, J., Yang, E., Hussain, A.: Combining deep convolutional neural network and SVM to SAR image target recognition. In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1082–1085. IEEE (2017)

    Google Scholar 

  12. Gao, X., et al.: Improvement of image classification by multiple optical scattering. IEEE Photonics J. 13(5), 1–5 (2021). https://doi.org/10.1109/JPHOT.2021.3109016

    Article  Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  14. Günaydin, Ö., Günay, M., Şengel, Ö.: Comparison of lung cancer detection algorithms. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), pp. 1–4. IEEE (2019)

    Google Scholar 

  15. Ivanov, A., Zhilenkov, A.: The prospects of use of deep learning neural networks in problems of dynamic images recognition. In: 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 886–889. IEEE (2018)

    Google Scholar 

  16. Jakimovski, G., Davcev, D.: Using double convolution neural network for lung cancer stage detection. Appl. Sci. 9(3), 427 (2019)

    Article  Google Scholar 

  17. Jiang, H., Ma, H., Qian, W., Gao, M., Li, Y.: An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE J. Biomed. Health Inform. 22(4), 1227–1237 (2017)

    Article  Google Scholar 

  18. Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Signal Process. Control 31, 174–180 (2017)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. Mehmood, S., et al.: Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access 10, 25657–25668 (2022). https://doi.org/10.1109/ACCESS.2022.3150924

    Article  Google Scholar 

  22. Mohalder, R.D., Sarkar, J.P., Hossain, K.A., Paul, L., Raihan, M.: A deep learning based approach to predict lung cancer from histopathological images. In: 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), pp. 1–4 (2021). https://doi.org/10.1109/ICECIT54077.2021.9641341

  23. Nilashi, M., Bin Ibrahim, O., Ahmadi, H., Shahmoradi, L.: An analytical method for diseases prediction using machine learning techniques. Comput. Chem. Eng. 106, 212–223 (2017)

    Article  Google Scholar 

  24. Phankokkruad, M.: Ensemble transfer learning for lung cancer detection. In: 2021 4th International Conference on Data Science and Information Technology, pp. 438–442 (2021)

    Google Scholar 

  25. Sedaghat, N., Fathy, M., Modarressi, M.H., Shojaie, A.: Combining supervised and unsupervised learning for improved miRNA target prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1594–1604 (2017)

    Google Scholar 

  26. Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  27. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  28. Zhang, J., et al.: Coupling a fast Fourier transformation with a machine learning ensemble model to support recommendations for heart disease patients in a telehealth environment. IEEE Access 5, 10674–10685 (2017)

    Article  Google Scholar 

  29. Zia ur Rehman, M., Javaid, M., Shah, S.I.A., Gilani, S.O., Jamil, M., Butt, S.I.: An appraisal of nodules detection techniques for lung cancer in CT images. Biomed. Signal Process. Control, 41, 140–151 (2018). https://doi.org/10.1016/j.bspc.2017.11.017, www.sciencedirect.com/science/article/pii/S1746809417302811

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Deb Mohalder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohalder, R.D., Hossain, K.A., Sarkar, J.P., Paul, L., Raihan, M., Talukder, K.H. (2023). Lung Cancer Detection from Histopathological Images Using Deep Learning. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-34619-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34619-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34618-7

  • Online ISBN: 978-3-031-34619-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics