Skip to main content

A Novel MIMO Antenna for 6G Applications

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

This paper proposes a novel Antenna with many inputs and outputs 6G MIMO (sixth generation) applications at a frequency of 300 GHz. The antenna performance enhancement is studied by inserting different widths (very slight, slightly noticeable, and hardly noticeable) of a decoupling structure between two closely installed radiating elements with a very close together edges of 0.13 mm. With 0.09 mm width decoupling structure, the highest performance (S21 <  −26 dB, ECC < 0.0003 and DG > 9.99 dB) is attained. Therefore, MIMO antenna design is suggested can be a good candidate for 6G technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pouttu, A.: 6Genesis–Taking the first steps towards 6G. In: Proc. IEEE Conf. Standards Communications and Networking. [Online]. Available: https://cscn2018.ieeecscn.org/files/2018/11/AriPouttu.pdf (2018)

  2. Samsung Research.: 6G: The next hyper connected experience for all. Seoul. [Online]. Available: https://research.samsung.com/next-generation-communications (2020)

  3. Rouse, M.: “6G,” TechTarget. https://searchnetworking.techtarget.com/definition/6G Accessed 07 Sep 2020 (2020)

  4. Gui, G., Liu, M., Kato, N., Adachi, F., Tang, F.: 6G: Opening new horizons for ıntegration of comfort, security and ıntelligence. IEEE Wirel. Commun. 1–7 (2020)

    Google Scholar 

  5. Chen, S., Sun, S., Xu, G., Su, X., Cai, Y.: Beam-space multiplexing: practice, theory, and trends-from 4G TD-LTE, 5G, to 6G and beyond. arXiv 2020, arXiv:2001.05021

  6. Letaief, K.B., Chen, W., Shi, Y., Zhang, J., Zhang, Y.J.A.: The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57(8), 84–90 (2019). https://doi.org/10.1109/MCOM.2019.1900271

    Article  Google Scholar 

  7. Dang, S., Amin, O., Shihada, B., Alouini, M.-S.: What should 6G be? Nat. Electron. 3, 20–29 (2020)

    Article  Google Scholar 

  8. Liang, Y.-C., Larsson, E.G., Niyato, D., Popovski, P.: 6G Mobile networks: emerging technologies and applications. China Commun. 17, 1–6 (2020)

    Article  Google Scholar 

  9. Chowdhury, M.Z., Shahjalal, M., Ahmed, S., Jang, Y.M.: 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. arXiv 2019, arXiv:1909.11315v1

  10. Alsharif, M., Hilary, A., Albreem, M., Chaudhry, S., Zia, M.S., Kim, S.: Sixth generation (6G) wireless networks: vision, research activities. Challenges Potential Solutions Symmetry 12, 676 (2020). https://doi.org/10.3390/sym12040676

    Article  Google Scholar 

  11. Shlezinger, N., Alexandropoulos, G.C., Imani, M.F., Eldar, Y.C., Smith, D.R.: Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel. Commun. 28(2), 106–113 (2021). https://doi.org/10.1109/MWC.001.2000267

    Article  Google Scholar 

  12. Hafizah Sa’don, S.N., et al.: The review and analysis of antenna for sixth generation (6G) applications. In: 2020 IEEE International RF and Microwave Conference (RFM), pp. 1–5 (2020). https://doi.org/10.1109/RFM50841.2020.9344731

  13. Aqlan, B., Himdi, M., Le Coq, L., Vettikalladi, H.: Sub-THz circularly polarized horn antenna using wire electrical discharge machining for 6G wireless communications. IEEE Access 8, 117245–117252 (2020). https://doi.org/10.1109/ACCESS.2020.3003853

    Article  Google Scholar 

  14. Chi, L., Weng, Z., Qi, Y., Drewniak, J.L.: A 60 GHz PCB wideband antenna-in-package for 5G/6G applications. IEEE Antennas Wirel. Propag. Lett. 1225, 1 (2020). https://doi.org/10.1109/LAWP.2020.3006873

    Article  Google Scholar 

  15. Xu, R., et al.: A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications. IEEE Access 8, 57615–57629 (2020). https://doi.org/10.1109/ACCESS.2020.2981393

    Article  Google Scholar 

  16. He, Y., Chen, Y., Zhang, L., Wong, S., Chen, Z.N.: An overview of terahertz antennas. China Commun. 17(7), 124–165 (2020). https://doi.org/10.23919/j.cc.2020.07.011

    Article  Google Scholar 

  17. Alibakhshikenari, M., Khalily, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A., Limiti, E.: Mutual coupling suppression between two closely placed microstrip patches using em-bandgap metamaterial fractal loading. IEEE Access 7, 23606–23614 (2019). https://doi.org/10.1109/ACCESS.2019.2899326

    Article  Google Scholar 

  18. Yon, H., Aris, M.A., Abd Rahman, N.H., Nasir, N.A.M., Jumaat, H.: A design of decoupling structure mımo antenna for mutual coupling reduction in 5g application. In: 2019 International Symposium on Antennas and Propagation (ISAP), pp. 1–3 (2019)

    Google Scholar 

  19. Baharom, B., Ali, M.T., Jaafar, H., Yon, H.: Dual-element of high-SHF PIFA MIMO antenna for future 5G wireless communication devices. In: Proceedings - 2018 International Symposium Antennas Propagation no. ISAP, pp. 151–152 (2018)

    Google Scholar 

  20. Qi, H., Xiaoxing, Y., Zhao Hongxin, W.J.K.: Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall. IEEE Antennas Wirel. Propag. Lett. 1225(c), 1–4 (2015)

    Google Scholar 

  21. Blanch, S., Romeu, J., Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39(9), 705–707 (2003)

    Article  Google Scholar 

  22. Park, J., Rahman, M., Chen, H.N.: Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading. IEEE Access 7, 81020–81026 (2019). https://doi.org/10.1109/ACCESS.2019.2923330

    Article  Google Scholar 

  23. Malekpour, N., Honarvar, M.A.: Design of high-isolation compact MIMO antenna for UWB application. Prog. Electromagn. Res. C 62, 119–129 (2016). https://doi.org/10.2528/PIERC15120902

    Article  Google Scholar 

  24. Sharawi, M.S.: Printed MIMO Antenna Engineering; Artech House: Norwood. MA, USA (2014)

    Google Scholar 

  25. Balanis, C.A.: Antenna Theory: Analysis Design. Third Edition, A John Wiles and Sons, Hoboken, New Jersey (2005)

    Google Scholar 

  26. Iqbal, A., Saraereh, O.A., Bouazizi, A., Basir, A.: Metamaterial-based highly ısolated MIMO antenna for portable wireless applications. Electronics 7, 267 (2018). https://doi.org/10.3390/electronics7100267

    Article  Google Scholar 

  27. Distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

    Google Scholar 

  28. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems ıntegration. Technical report, Global Grid Forum (2002)

    Google Scholar 

  29. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umor Fasal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fasal, U. et al. (2023). A Novel MIMO Antenna for 6G Applications. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34622-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34621-7

  • Online ISBN: 978-3-031-34622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics