Abstract
Nowadays, local or private data centers are a revolution that is developing rapidly. Many companies and educational organizations are building local data centers for security reasons. However, the energy consumption issues of data centers are rapidly increasing which needs to be addressed to develop green data centers. Many methods and techniques had been developed for minimizing the energy consumption of data centers. In this paper, an energy-efficient proposed model has been suggested for East West university’s local data center for upgrading to a green data center. It is found that approximately 20% to 30% of energy will be saved after redesigning the data center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cholli, N.G.: Green Cloud computing: redefining the future of cloud computing. Int. Res. J. Adv. Sci. Hub 3, 12–19 (2021)
Depavath, H., Ramesh, K.B., Chithra, B., Ramana, M.V.: Green computing-an efficient eco friendly computing, vol. 2, no. 08, August 2015
Atrey, A., Jain, N., Iyengar, N.: A study on green cloud computing. Int. J. Grid Distrib. Comput. 6(6), 93–102 (2013)
Managıng and Understandıng On-Premıses and Cloud Spend. https://www.softwareone.com/en-ie/downloads/global/research-report-on-premises-and-cloud-spend. Accessed 11 Jan 2022
Yang, J., Xiao, W., Jiang, C., Hossain, M.S., Muhammad, G., Amin, S.U.: AI-powered green cloud and data center. IEEE Access 7, 4195–4203 (2018)
Yadav, A.K., Garg, M.L, Ritika: The ıssues of energy efficiency in cloud computing based data centers. Oryzae. Biosc. Biotech. Res. Comm. 12(2) (2019)
Diouani, S., Medromi, H.: Survey: an optimized energy consumption of resources in cloud data centers. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 16(2) (2018)
Buyya, R., Gill, S.S.: Sustainable cloud computing: foundations and future directions. arXiv preprint arXiv:1805.01765 (2018)
Derdus, K.M., Omwenga, V.O., Ogao, P.J.: Causes of energy wastage in cloud data centre servers: a survey (2019)
Helfert, M., Desprez, F., Ferguson, D., Leymann, F. (eds.): CLOSER 2013. CCIS, vol. 453. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11561-0
Diaconescu, D., Pop, F., Cristea, V.: Energy-aware placement of VMs in a datacenter. In: 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 313–318. IEEE (2013)
Li, L.: Energy consumption management of virtual cloud computing platform. IOP Conf. Ser. Earth Environ. Sci. 94(1) (2017)
Dumitrescu, C., Plesca, A., Dumitrescu, L., Adam, M., Nituca, C., Dragomir, A.: Assessment of data center energy efficiency methods and metrics. In: 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), pp. 0487–0492. IEEE (2018)
Yadav, R., Zhang, W., Chen, H., Guo, T.: Mums: energy-aware VM selection scheme for cloud data center. In: 2017 28th International Workshop on Database and Expert Systems Applications (DEXA), pp. 132–136. IEEE (2017)
Ali, R., Shen, Y., Huang, X., Zhang, J., Ali, A.: VMR: virtual machine replacement algorithm for QoS and energy-awareness in cloud data centers. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 2, pp. 230–233. IEEE (2017)
Khoshkholghi, M.A., Derahman, M.N., Abdullah, A., Subramaniam, S., Othman, M.: Energy-efficient algorithms for dynamic virtual machine consolidation in cloud data centers. IEEE Access 5, 10709–10722 (2017)
Berl, A., et al.: Energy-efficient cloud computing. Comput. J. 53(7), 1045-1051 (2010)
Adhikary, T., Das, A.K., Razzaque, M.A., Sarkar, A.J.: Energy-efficient scheduling algorithms for data center resources in cloud computing. In: 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, pp. 1715–1720. IEEE (2013)
Babu, G.P., Tiwari, A.K.: Energy efficient scheduling algorithm for cloud computing systems based on prediction model. Int. J. Adv. Network. Appl. 10(5), 4013–4018 (2019)
Basmadjian, R., Meer, H.D., Lent, R., Giuliani, G.: Cloud computing and its interest in saving energy: the use case of a private cloud. J. Cloud Comput. Adv. Syst. Appl. 1(1), 1–25 (2012)
Singh, S., Sharma, P.K., Moon, S.Y., Park, J.H.: EH-GC: an efficient and secure architecture of energy harvesting Green cloud infrastructure. Sustainability 9(4), 673 (2017)
Madani, N., Lebbat, A., Tallal, S., Medromi, H.: Power-aware virtual Machines consolidation architecture based on CPU load scheduling. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 361–365. IEEE (2014)
Gao, J.: Machine learning applications for data center optimization (2014)
Wang, J., Zhou, B., Liu, W., Hu, S.: Research progress and development trend of cross-layer energy efficiency optimization in data centers. SCIENTIA SINICA Inf. 50(1), 1–24 (2020)
Pries, R., Jarschel, M., Schlosser, D., Klopf, M., Tran-Gia, P.: Power consumption analysis of data center architectures. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICSSITE, vol. 51, pp. 114–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33368-2_10
Rais, M.Z.: Design of green data center. Int. J. Res. Eng. Technol. (IJRET) 03(05) (2014)
Kass, S., Ravagni, A.: Designing and building the next generation of sustainable data centers. Sustain. Dev. Goals, 1–21 (2019)
Mukherjee, D., Chakraborty, S., Sarkar, I., Ghosh, A., Roy, S.: A detailed study on data centre energy efficiency and efficient cooling techniques. Int. J. 9(5) (2020)
Peoples, C., Parr, G., McClean, S., Morrow, P., Scotney, B.: Energy aware scheduling across ‘green’ cloud data centres. In: IEEE International Symposium on Integrated Network Management, pp. 876–879 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Islam, N., Chhoa, L.A., Reza, A.W. (2023). Energy Consumption Issues of a Data Center. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-34622-4_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34621-7
Online ISBN: 978-3-031-34622-4
eBook Packages: Computer ScienceComputer Science (R0)