Abstract
Around our world clients needs services that are informative and technologically advanced. Advanced technologies like cloud computing allow the clients or the consumer to pay an efficient amount of money according to the service that they are getting. It permits any application for being hosted in a research or corporational structure. The included networked computers, cables, power supply, etc. in the data center is the main bone of cloud computing. The data centers consume a great amount of power to fulfill their work process which increases the cost and also affects the environment of the work by increasing the carbon footprint. To keep the carbon emission to check it is very necessary to check the electricity and power consumption. Keeping the energy in check we have solved the issue of efficient cloud computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deiab, M., El-Menshawy, D., El-Abd, S., Mostafa, A., El-Seoud, M.S.A.: Energy efficiency in cloud computing. Int. J. Mach. Learn. Comput. 9(1), 98–102 (2019). https://doi.org/10.18178/ijmlc.2019.9.1.771
Shree, T., Kumar, R., Kumar, N.: Green computing in cloud computing. In: Proceedings - IEEE 2020 2nd International Conference Advanced Computing Communication Control Networking, ICACCCN 2020, pp. 903–905 (2020). https://doi.org/10.1109/ICACCCN51052.2020.9362822
Mosoti, K., Oteke, V., Job, P.: The effect of cloud workload consolidation on cloud energy consumption and performance in multi-tenant cloud infrastructure. Int. J. Comput. Appl. 181(37), 47–53 (2019). https://doi.org/10.5120/ijca2019918353
Kumar, S., Kalra, M.: A hybrid approach for energy-efficient task scheduling in cloud. In: Krishna, C.R., Dutta, M., Kumar, R. (eds.) Proceedings of 2nd International Conference on Communication, Computing and Networking. LNNS, vol. 46, pp. 1011–1019. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1217-5_99
Kołodziej, J., et al.: Security, energy, and performance-aware resource allocation mechanisms for computational grids. Futur. Gener. Comput. Syst. 31(1), 77–92 (2014). https://doi.org/10.1016/j.future.2012.09.009
Zhang, Y., Cheng, X., Chen, L., Shen, H.: Energy-efficient tasks scheduling heuristics with multi-constraints in virtualized clouds. J. Grid Comput. 16(3), 459–475 (2018). https://doi.org/10.1007/s10723-018-9426-6
Hosseinimotlagh, S., Khunjush, F., Samadzadeh, R.: SEATS: smart energy-aware task scheduling in real-time cloud computing. J. Supercomput. 71(1), 45–66 (2014). https://doi.org/10.1007/s11227-014-1276-9
Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2015). https://doi.org/10.1007/s10723-015-9334-y
Akhter, N., Othman, M., Naha, R.K.: Energy-aware virtual machine selection method for cloud data center resource allocation 2018 (2018). http://arxiv.org/abs/1812.08375
Tighe, M., Bauer, M.: Topology and application aware dynamic vm management in the cloud. J. Grid Comput. 15(2), 273–294 (2017). https://doi.org/10.1007/s10723-017-9397-z
Goyal, Y., Arya, M.S., Nagpal, S.: Energy efficient hybrid policy in green cloud computing. In: Proceedings 2015 International Conference Green Computing Internet Things, ICGCIoT 2015, pp. 1065–1069 (2016). https://doi.org/10.1109/ICGCIoT.2015.7380621
Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: CCGrid 2010 - 10th IEEE/ACM Internationl Conference Cluster Cloud, Grid Computing, pp. 577–578 (2010). https://doi.org/10.1109/ccgrid.2010.45
Soltanshahi, M., Asemi, R., Shafiei, N.: Energy-aware virtual machines allocation by krill herd algorithm in cloud data centers. Heliyon 5(7), 3–8 (2019). https://doi.org/10.1016/j.heliyon.2019.e02066
Kumar, N., Kumar, R., Aggrawal, M.: Energy efficient DVFS with VM migration. Eur. J. Adv. Eng. Technol. 5(1), 61–68 (2018)
Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomput. 61(1), 46–66 (2012). https://doi.org/10.1007/s11227-011-0658-5
Khattar, N., Sidhu, J., Singh, J.: Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. J. Supercomput. 75(8), 4750–4810 (2019). https://doi.org/10.1007/s11227-019-02764-2
Kenga, D.M., Omwenga, V.O., Ogao, P.J.: Autonomous virtual machine sizing and resource usage prediction for efficient resource utilization in multi-tenant public cloud. Int. J. Inf. Technol. Comput. Sci. 11(5), 11–22 (2019). https://doi.org/10.5815/ijitcs.2019.05.02
Patel, Y.S., Mehrotra, N., Soner, S.: Green cloud computing: a review on Green IT areas for cloud computing environment. In: 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 327–332 (2015). https://doi.org/10.1109/ABLAZE.2015.7155006
X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, Franciosi, F., Knottenbelt, W.: CloudScope: diagnosing and managing performance ınterference in multi-tenant clouds. In: Proceedings - International Symposium on Modeling, Analysis and. Simulation of Computer and Telecommunication Systems, MASCOTS, vol. 2015, pp. 164–173 (2015). https://doi.org/10.1109/MASCOTS.2015.35
Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing. ACM Comput. Surv. 48(2), 1–46 (2015). https://doi.org/10.1145/2742488
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Mursalin, S.M., Jilani, M.A.K., Reza, A.W. (2023). A Hybrid Cloud System for Power-Efficient Cloud Computing. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-34622-4_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34621-7
Online ISBN: 978-3-031-34622-4
eBook Packages: Computer ScienceComputer Science (R0)