Skip to main content

A Hybrid Cloud System for Power-Efficient Cloud Computing

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

Around our world clients needs services that are informative and technologically advanced. Advanced technologies like cloud computing allow the clients or the consumer to pay an efficient amount of money according to the service that they are getting. It permits any application for being hosted in a research or corporational structure. The included networked computers, cables, power supply, etc. in the data center is the main bone of cloud computing. The data centers consume a great amount of power to fulfill their work process which increases the cost and also affects the environment of the work by increasing the carbon footprint. To keep the carbon emission to check it is very necessary to check the electricity and power consumption. Keeping the energy in check we have solved the issue of efficient cloud computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deiab, M., El-Menshawy, D., El-Abd, S., Mostafa, A., El-Seoud, M.S.A.: Energy efficiency in cloud computing. Int. J. Mach. Learn. Comput. 9(1), 98–102 (2019). https://doi.org/10.18178/ijmlc.2019.9.1.771

    Article  Google Scholar 

  2. Shree, T., Kumar, R., Kumar, N.: Green computing in cloud computing. In: Proceedings - IEEE 2020 2nd International Conference Advanced Computing Communication Control Networking, ICACCCN 2020, pp. 903–905 (2020). https://doi.org/10.1109/ICACCCN51052.2020.9362822

  3. Mosoti, K., Oteke, V., Job, P.: The effect of cloud workload consolidation on cloud energy consumption and performance in multi-tenant cloud infrastructure. Int. J. Comput. Appl. 181(37), 47–53 (2019). https://doi.org/10.5120/ijca2019918353

    Article  Google Scholar 

  4. Kumar, S., Kalra, M.: A hybrid approach for energy-efficient task scheduling in cloud. In: Krishna, C.R., Dutta, M., Kumar, R. (eds.) Proceedings of 2nd International Conference on Communication, Computing and Networking. LNNS, vol. 46, pp. 1011–1019. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1217-5_99

    Chapter  Google Scholar 

  5. Kołodziej, J., et al.: Security, energy, and performance-aware resource allocation mechanisms for computational grids. Futur. Gener. Comput. Syst. 31(1), 77–92 (2014). https://doi.org/10.1016/j.future.2012.09.009

    Article  Google Scholar 

  6. Zhang, Y., Cheng, X., Chen, L., Shen, H.: Energy-efficient tasks scheduling heuristics with multi-constraints in virtualized clouds. J. Grid Comput. 16(3), 459–475 (2018). https://doi.org/10.1007/s10723-018-9426-6

    Article  Google Scholar 

  7. Hosseinimotlagh, S., Khunjush, F., Samadzadeh, R.: SEATS: smart energy-aware task scheduling in real-time cloud computing. J. Supercomput. 71(1), 45–66 (2014). https://doi.org/10.1007/s11227-014-1276-9

    Article  Google Scholar 

  8. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2015). https://doi.org/10.1007/s10723-015-9334-y

    Article  Google Scholar 

  9. Akhter, N., Othman, M., Naha, R.K.: Energy-aware virtual machine selection method for cloud data center resource allocation 2018 (2018). http://arxiv.org/abs/1812.08375

  10. Tighe, M., Bauer, M.: Topology and application aware dynamic vm management in the cloud. J. Grid Comput. 15(2), 273–294 (2017). https://doi.org/10.1007/s10723-017-9397-z

    Article  Google Scholar 

  11. Goyal, Y., Arya, M.S., Nagpal, S.: Energy efficient hybrid policy in green cloud computing. In: Proceedings 2015 International Conference Green Computing Internet Things, ICGCIoT 2015, pp. 1065–1069 (2016). https://doi.org/10.1109/ICGCIoT.2015.7380621

  12. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: CCGrid 2010 - 10th IEEE/ACM Internationl Conference Cluster Cloud, Grid Computing, pp. 577–578 (2010). https://doi.org/10.1109/ccgrid.2010.45

  13. Soltanshahi, M., Asemi, R., Shafiei, N.: Energy-aware virtual machines allocation by krill herd algorithm in cloud data centers. Heliyon 5(7), 3–8 (2019). https://doi.org/10.1016/j.heliyon.2019.e02066

    Article  Google Scholar 

  14. Kumar, N., Kumar, R., Aggrawal, M.: Energy efficient DVFS with VM migration. Eur. J. Adv. Eng. Technol. 5(1), 61–68 (2018)

    Google Scholar 

  15. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomput. 61(1), 46–66 (2012). https://doi.org/10.1007/s11227-011-0658-5

    Article  Google Scholar 

  16. Khattar, N., Sidhu, J., Singh, J.: Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. J. Supercomput. 75(8), 4750–4810 (2019). https://doi.org/10.1007/s11227-019-02764-2

    Article  Google Scholar 

  17. Kenga, D.M., Omwenga, V.O., Ogao, P.J.: Autonomous virtual machine sizing and resource usage prediction for efficient resource utilization in multi-tenant public cloud. Int. J. Inf. Technol. Comput. Sci. 11(5), 11–22 (2019). https://doi.org/10.5815/ijitcs.2019.05.02

    Article  Google Scholar 

  18. Patel, Y.S., Mehrotra, N., Soner, S.: Green cloud computing: a review on Green IT areas for cloud computing environment. In: 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 327–332 (2015). https://doi.org/10.1109/ABLAZE.2015.7155006

  19. X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, Franciosi, F., Knottenbelt, W.: CloudScope: diagnosing and managing performance ınterference in multi-tenant clouds. In: Proceedings - International Symposium on Modeling, Analysis and. Simulation of Computer and Telecommunication Systems, MASCOTS, vol. 2015, pp. 164–173 (2015). https://doi.org/10.1109/MASCOTS.2015.35

  20. Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing. ACM Comput. Surv. 48(2), 1–46 (2015). https://doi.org/10.1145/2742488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Wasif Reza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mursalin, S.M., Jilani, M.A.K., Reza, A.W. (2023). A Hybrid Cloud System for Power-Efficient Cloud Computing. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34622-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34621-7

  • Online ISBN: 978-3-031-34622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics