Skip to main content

Towards an Interaction Design Framework for IoT Healthcare Systems

  • Conference paper
  • First Online:
Distributed, Ambient and Pervasive Interactions (HCII 2023)

Abstract

The rising prevalence of chronic conditions has fuelled the development of numerous devices and IoT systems to improve patients’ health outcomes. Despite the abundance of these solutions, their usability remains a significant challenge, hindering their adoption and effectiveness. This paper proposes a conceptual interaction design framework for IoT healthcare systems that prioritises the three critical components of usability: effectiveness, efficiency, and satisfaction. To develop the framework, we conducted a state of the art review and interviewed patients and health experts using the Design Sprint methodology. This resulted in the creation of three personas and their related user stories. Our framework consists of three main components: User Interfaces as Services, Context-Aware Interactions, and User-Centred Data Management. A hypothetical scenario of a digital companion for individuals with diabetes was used to demonstrate the feasibility of the framework. The results of the proposal underscore the importance of considering all stakeholders when designing IoT systems and highlight the potential for individuals to benefit from a more integrated and personalised experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvillo-Arbizu, J., Román-Martínez, I., Reina-Tosina, J.: Internet of things in health: requirements, issues, and gaps. Comput. Methods Programs Biomed. 208, 106231 (2021). https://doi.org/10.1016/j.cmpb.2021.106231

    Article  Google Scholar 

  2. Campos-Nonato, I., Ramírez-Villalobos, M., Flores-Coria, A., Valdez, A., Monterrubio-Flores, E.: Prevalence of previously diagnosed diabetes and glycemic control strategies in Mexican adults: Ensanut-2016. PLOS ONE 15(4), 1–11 (2020). https://doi.org/10.1371/journal.pone.0230752

  3. Chhiba, L., Marzak, A., Sidqui, M.: Quality attributes for evaluating IoT healthcare systems. In: Ben Ahmed, M., Boudhir, A.A., Karas, İR., Jain, V., Mellouli, S. (eds.) SCA 2021. LNNS, vol. 393, pp. 495–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94191-8_40

    Chapter  Google Scholar 

  4. Cohen, I.G., Mello, M.M.: HIPAA and protecting health information in the 21st Century. JAMA 320(3), 231–232 (2018). https://doi.org/10.1001/jama.2018.5630

  5. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley Professional, Boston (2004)

    Google Scholar 

  6. De Michele, R., Furini, M.: IoT healthcare: benefits, issues and challenges. In: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good. GoodTechs ’19, pp. 160–164. Association for Computing Machinery, Valencia (2019). https://doi.org/10.1145/3342428.3342693

  7. Gutwin, C., Greenberg, S.: The mechanics of collaboration: developing low cost usability evaluation methods for shared workspaces. In: Proceedings IEEE 9th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000), Gaithersburg, MD, USA, pp. 98–103 (2000). https://doi.org/10.1109/ENABL.2000.883711

  8. Hossain, M.I., Yusof, A.F., Hussin, A.R.C., lahad, N.A., Sadiq, A.S.: Factors influencing adoption model of continuous glucose monitoring devices for internet of things healthcare. Internet Things 15, 100353 (2021). https://doi.org/10.1016/j.iot.2020.100353, https://www.sciencedirect.com/science/article/pii/S2542660520301840

  9. Kashyap, V., Kumar, A., Kumar, A., Hu, Y.C.: A systematic survey on fog and IoT driven healthcare: open challenges and research issues. Electronics 11(17) (2022). https://doi.org/10.3390/electronics11172668

  10. Keijzer-Broers, W.J.W., de Reuver, M.: Applying agile design sprint methods in action design research: prototyping a health and wellbeing platform. In: Parsons, J., Tuunanen, T., Venable, J., Donnellan, B., Helfert, M., Kenneally, J. (eds.) DESRIST 2016. LNCS, vol. 9661, pp. 68–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39294-3_5

    Chapter  Google Scholar 

  11. Knapp, J., Zeratsky, J., Kowitz, B.: Sprint: how to solve big problems and test new ideas in just five days. Simon and Schuster (2016)

    Google Scholar 

  12. Lemoine, F., Aubonnet, T., Simoni, N.: IoT composition based on self-controlled services. J. Ambient. Intell. Humaniz. Comput. 11(11), 5167–5186 (2020). https://doi.org/10.1007/s12652-020-01831-4

    Article  Google Scholar 

  13. Pradhan, B., Bhattacharyya, S., Pal, K.: IoT-based applications in healthcare devices. J. Healthc. Eng. 2021, 6632599 (2021). https://doi.org/10.1155/2021/6632599

    Article  Google Scholar 

  14. Riad, K., Hamza, R., Yan, H.: Sensitive and energetic IoT access control for managing cloud electronic health records. IEEE Access 7, 86384–86393 (2019). https://doi.org/10.1109/ACCESS.2019.2926354

    Article  Google Scholar 

  15. Sari, E., Tedjasaputra, A.: Designing valuable products with design sprint. In: Bernhaupt, R., Dalvi, G., Joshi, A., K. Balkrishan, D., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10516, pp. 391–394. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68059-0_37

    Chapter  Google Scholar 

  16. Selvaraj, S., Sundaravaradhan, S.: Challenges and opportunities in IoT healthcare systems: a systematic review. SN Appl. Sci. 2(1), 1–8 (2019). https://doi.org/10.1007/s42452-019-1925-y

    Article  Google Scholar 

  17. Sneesl, R., Jusoh, Y.Y., Jabar, M.A., Abdullah, S.: Revising technology adoption factors for IoT-based smart campuses: a systematic review. Sustainability 14(8), 4840 (2022). https://doi.org/10.3390/su14084840

  18. Southall, H., Marmion, M., Davies, A.: Adapting Jake Knapp’s design sprint approach for AR/VR applications in digital heritage. In: tom Dieck, M.C., Jung, T. (eds.) Augmented Reality and Virtual Reality. PI, pp. 59–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06246-0_5

    Chapter  Google Scholar 

  19. Suryandari, Y.: Survei IoT healthcare device. Jurnal Sistem Cerdas 3(2), 153–164 (2020). https://doi.org/10.37396/jsc.v3i2.55

  20. Syagnik (Sy) Banerjee, Hemphill, T., Longstreet, P.: Wearable devices and healthcare: data sharing and privacy. Inf. Soc. 34(1), 49–57 (2018). https://doi.org/10.1080/01972243.2017.1391912

  21. Wiberg, M.: Addressing IoT: Towards material-centered interaction design. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10901, pp. 198–207. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91238-7_17

    Chapter  Google Scholar 

  22. Yen, P.Y., Bakken, S.: Review of health information technology usability study methodologies. J. Am. Med. Inform. Assoc. 19(3), 413–422 (2011). https://doi.org/10.1136/amiajnl-2010-000020

  23. Yu, H., Zhou, Z.: Optimization of IoT-based artificial intelligence assisted telemedicine health analysis system. IEEE Access 9, 85034–85048 (2021). https://doi.org/10.1109/ACCESS.2021.3088262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Martín Sánchez-Adame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monroy-Rodríguez, G., Sánchez-Adame, L.M., Mendoza, S., Valdespin-Garcia, I.G., Decouchant, D. (2023). Towards an Interaction Design Framework for IoT Healthcare Systems. In: Streitz, N.A., Konomi, S. (eds) Distributed, Ambient and Pervasive Interactions. HCII 2023. Lecture Notes in Computer Science, vol 14036. Springer, Cham. https://doi.org/10.1007/978-3-031-34668-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34668-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34667-5

  • Online ISBN: 978-3-031-34668-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics