Skip to main content

Robust Group Testing-Based Multiple-Access Protocol for Massive MIMO

  • Conference paper
  • First Online:
Cyber Security, Cryptology, and Machine Learning (CSCML 2023)

Abstract

With the ever-increasing demand for more per-household devices and the addition of more antennas per device, the challenge of effective scheduling and resource sharing to access the wireless shared channel for uplink communication with the base station (BS) becomes daunting. To address this issue, we devise and study a robust multiple-access protocol for massive multiple-input-multiple-output (MIMO) systems, based on sparse coding techniques originated in group testing (GT), for systems with non-cooperative self-scheduling users with reduced complexity and no scheduling overhead.

In this study, we analyze our scheme’s bit-error rate, decoding error probability, scaling laws, system sum-rate, and complexity. We show that our suggested scheme is order-optimal by comparing our sum-rate with the perfect channel state information (CSI) model and numerically evaluate how our system scales with an increasing number of active devices and signal-to-noise ratio (SNR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN (2021). https://doi.org/10.1109/IEEESTD.2021.9442429. IEEE Std 802.11ax-2021

  2. Aldridge, M., Baldassini, L., Johnson, O.: Group testing algorithms: bounds and simulations. IEEE Trans. Inf. Theory 60(6), 3671–3687 (2014). https://doi.org/10.1109/TIT.2014.2314472

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldridge, M., Johnson, O., Scarlett, J.: Group testing: an information theory perspective (2019)

    Google Scholar 

  4. Atia, G., Saligrama, V.: Noisy group testing: an information theoretic perspective. In: 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 355–362 (2009). https://doi.org/10.1109/ALLERTON.2009.5394787

  5. Atia, G.K., Saligrama, V.: Boolean compressed sensing and noisy group testing. IEEE Trans. Inf. Theory 58(3), 1880–1901 (2012). https://doi.org/10.1109/TIT.2011.2178156

    Article  MathSciNet  MATH  Google Scholar 

  6. Atia, G.K., Saligrama, V., Aksoylar, C.: Correction to “Boolean compressed sensing and noisy group testing” [Mar 12 1880–1901]. IEEE Trans. Inf. Theory 61(3), 1507–1507 (2015). https://doi.org/10.1109/TIT.2015.2392116

  7. Chan, C., Che, P.H., Jaggi, S., Saligrama, V.: Non-adaptive probabilistic group testing with noisy measurements: near-optimal bounds with efficient algorithms. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton (2011). https://doi.org/10.1109/Allerton.2011.6120391

  8. Chan, C.L., Jaggi, S., Saligrama, V., Agnihotri, S.: Non-adaptive group testing: explicit bounds and novel algorithms. In: IEEE International Symposium on Information Theory Proceedings, pp. 1837–1841 (2012). https://doi.org/10.1109/ISIT.2012.6283597

  9. Cohen, A., Cohen, A., Gurewitz, O.: Secured data gathering protocol for IoT networks. In: Dinur, I., Dolev, S., Lodha, S. (eds.) CSCML 2018. LNCS, vol. 10879, pp. 129–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94147-9_11

    Chapter  Google Scholar 

  10. Cohen, A., Cohen, A., Gurewitz, O.: Efficient data collection over multiple access wireless sensors network. IEEE/ACM Trans. Netw. 28(2), 491–504 (2020). https://doi.org/10.1109/TNET.2020.2964764

    Article  Google Scholar 

  11. Cohen, A., Cohen, A., Gurewitz, O.: Secure group testing. IEEE Trans. Inf. Forensics Secur. 16, 4003–4018 (2021). https://doi.org/10.1109/TIFS.2020.3029877

    Article  Google Scholar 

  12. Du, D., Hwang, F.K., Hwang, F.: Combinatorial Group Testing and Its Applications, vol. 12. World Scientific (2000)

    Google Scholar 

  13. Goldsmith, A.: Wireless Communications. Cambridge University Press (2005). https://doi.org/10.1017/CBO9780511841224

  14. Gulasekaran, S., Sankaran, S.: Wi-Fi 6 Protocol and Network. Artech House Mobile Communications Library, Artech House (2022). https://books.google.co.il/books?id=WXx4zgEACAAJ

  15. Hassibi, B., Hochwald, B.: How much training is needed in multiple-antenna wireless links? IEEE Trans. Inf. Theory 49(4), 951–963 (2003). https://doi.org/10.1109/TIT.2003.809594

    Article  MATH  Google Scholar 

  16. Kampeas, J., Cohen, A., Gurewitz, O.: Rate analysis of distributed multiuser MIMO protocols for the 802.11ac. In: IEEE International Conference on the Science of Electrical Engineering (ICSEE), pp. 1–5 (2016). https://doi.org/10.1109/ICSEE.2016.7806096

  17. Paquelet, S., Aubert, L.M., Uguen, B.: An impulse radio asynchronous transceiver for high data rates. In: International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST IWUWBS (IEEE Cat. No.04EX812), pp. 1–5 (2004). https://doi.org/10.1109/UWBST.2004.1320888

  18. Robin, J., Erkip, E.: Capacity bounds and user identification costs in Rayleigh-fading many-access channel. In: IEEE International Symposium on Information Theory (ISIT), pp. 2477–2482. IEEE (2021)

    Google Scholar 

  19. Robin, J., Erkip, E.: Sparse activity discovery in energy constrained multi-cluster IoT networks using group testing. In: IEEE International Conference on Communications (ICC), pp. 1–6 (2021). https://doi.org/10.1109/ICC42927.2021.9500808

  20. Roth, R.: Introduction to Coding Theory. Cambridge University Press (2006). https://doi.org/10.1017/CBO9780511808968

  21. Scarlett, J., Johnson, O.: Noisy non-adaptive group testing: a (near-)definite defectives approach. IEEE Trans. Inf. Theory 66(6), 3775–3797 (2020). https://doi.org/10.1109/TIT.2020.2970184

    Article  MathSciNet  MATH  Google Scholar 

  22. Sejdinovic, D., Johnson, O.: Note on noisy group testing: asymptotic bounds and belief propagation reconstruction. In: 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 998–1003. IEEE (2010)

    Google Scholar 

  23. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  24. Vershinin, G., Cohen, A., Gurewitz, O.: Order-optimal joint transmission and identification in massive multi-user MIMO via group testing (2022). https://doi.org/10.48550/ARXIV.2210.00421

  25. Wen, M., Cheng, X., Yang, L.: Index Modulation for 5G Wireless Communications. WN, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51355-3

    Book  Google Scholar 

  26. Xia, X., et al.: Joint user selection and transceiver design for cell-free with network-assisted full duplexing. IEEE Trans. Wirel. Commun. 20(12), 7856–7870 (2021). https://doi.org/10.1109/TWC.2021.3088485

    Article  Google Scholar 

  27. Yoo, T., Goldsmith, A.: Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 52(5), 2203–2214 (2006). https://doi.org/10.1109/TIT.2006.872984

    Article  MathSciNet  MATH  Google Scholar 

  28. Yoo, T., Goldsmith, A.: On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 24(3), 528–541 (2006). https://doi.org/10.1109/JSAC.2005.862421

    Article  Google Scholar 

  29. Zhang, J., Liu, M., Xiong, K., Zhang, M.: Near-optimal user clustering and power control for uplink MISO-NOMA networks. In: IEEE Global Communications Conference (GLOBECOM), pp. 01–06 (2021). https://doi.org/10.1109/GLOBECOM46510.2021.9685202

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Vershinin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vershinin, G., Cohen, A., Gurewitz, O. (2023). Robust Group Testing-Based Multiple-Access Protocol for Massive MIMO. In: Dolev, S., Gudes, E., Paillier, P. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2023. Lecture Notes in Computer Science, vol 13914. Springer, Cham. https://doi.org/10.1007/978-3-031-34671-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34671-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34670-5

  • Online ISBN: 978-3-031-34671-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics