Skip to main content

An Interactive Visualization System for Streaming Data Online Exploration

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2022)

Abstract

The practices of understanding real-world data, in particular the high dynamic streaming data (e.g., social events, COVID tracking), generally relies on both human and machine intelligence. The use of mobile computing and edge computing brings a lot of data. However, we identify that existing data structures of visualization systems (a.k.a., data cubes) are designed for quasi-static scenarios, thus will experience huge efficiency degradation when dealing with the ever-growing streaming data. In this work, we propose the design and implementation of an enhanced interactive visualization system (i.e., Linkube) based on novel structure and algorithms support, for efficiently and intelligibly data exploration. Basically, Linkube is designed as a multi-dimensional and multi-level tree with spatiotemporal correlated knowledge units linked into a chain. Interested knowledge aggregations are thus attained via efficient and flexible sequential access, instead of dummy depth-first searching. Meanwhile, Linkube also involves a smart caching mechanism that adaptively reserves some beneficial aggregations. We implement Linkube as a web service and evaluate its performance with four real-world datasets. The results demonstrate the superiority of Linkube on response time (\(\sim \)25% \(\downarrow \)) and structure updating time (\(\sim \)45% \(\downarrow \)), compared with state-of-the-art designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 1–16. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/543613.543615

  2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indices. Acta Informatica 1, 173–189 (1972). https://doi.org/10.1007/BF00288683

    Article  MATH  Google Scholar 

  3. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, 1–3 June 1999, Philadelphia, Pennsylvania, USA, pp. 359–370. ACM Press (1999). https://doi.org/10.1145/304182.304214

  4. Bosch, H., et al.: Scatterblogs2: real-time monitoring of microblog messages through user-guided filtering. IEEE Trans. Vis. Comput. Graph. 19(12), 2022–2031 (2013). https://doi.org/10.1109/TVCG.2013.186

    Article  Google Scholar 

  5. Cao, N., Lin, Y.R., Sun, X., Lazer, D., Liu, S., Qu, H.: Whisper: tracing the spatiotemporal process of information diffusion in real time. IEEE Trans. Visual Comput. Graphics 18(12), 2649–2658 (2012). https://doi.org/10.1109/TVCG.2012.291

    Article  Google Scholar 

  6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Apté, C., Ghosh, J., Smyth, P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1082–1090. ACM (2011). https://doi.org/10.1145/2020408.2020579

  7. Crow, F.C.: Summed-area tables for texture mapping. In: Christiansen, H. (ed.) Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1984, Minneapolis, Minnesota, USA, 23–27 July 1984, pp. 207–212. ACM (1984). https://doi.org/10.1145/800031.808600

  8. Dasgupta, A., Arendt, D.L., Franklin, L.R., Wong, P.C., Cook, K.A.: Human factors in streaming data analysis: challenges and opportunities for information visualization. Comput. Graph. Forum 37(1), 254–272 (2018). https://doi.org/10.1111/cgf.13264. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13264

  9. de Lara Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.D.: Hashedcubes: simple, low memory, real-time visual exploration of big data. IEEE Trans. Vis. Comput. Graph. 23(1), 671–680 (2017). https://doi.org/10.1109/TVCG.2016.2598624

  10. Levine, R.A., Sampson, E., Lee, T.C.M.: Journal of computational and graphical statistics. WIREs Comput. Stat. 6(4), 233–239 (2014). https://doi.org/10.1002/wics.1307

    Article  Google Scholar 

  11. Li, M., Choudhury, F.M., Bao, Z., Samet, H., Sellis, T.: Concavecubes: supporting cluster-based geographical visualization in large data scale. Comput. Graph. Forum 37(3), 217–228 (2018). https://doi.org/10.1111/cgf.13414

    Article  Google Scholar 

  12. Li, Q., Wei, X., Lin, H., Liu, Y., Chen, T., Ma, X.: Inspecting the running process of horizontal federated learning via visual analytics. IEEE Trans. Visual. Comput. Graphics 28(12), 4085–4100 (2021)

    Article  Google Scholar 

  13. Lins, L.D., Klosowski, J.T., Scheidegger, C.E.: Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph. 19(12), 2456–2465 (2013). https://doi.org/10.1109/TVCG.2013.179

    Article  Google Scholar 

  14. Liu, C., Wu, C., Shao, H., Yuan, X.: Smartcube: an adaptive data management architecture for the real-time visualization of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph. 26(1), 790–799 (2020). https://doi.org/10.1109/TVCG.2019.2934434

    Article  Google Scholar 

  15. Liu, G., Zhang, Q., Cao, Y., Tian, G., Ji, Z.: Online human action recognition with spatial and temporal skeleton features using a distributed camera network. Int. J. Intell. Syst. 36(12), 7389–7411 (2021). https://doi.org/10.1002/int.22591. https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22591

  16. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis. IEEE Trans. Visual Comput. Graphics 20(12), 2122–2131 (2014)

    Article  Google Scholar 

  17. Mansmann, F., Krstajic, M., Fischer, F., Bertini, E.: StreamSqueeze: a dynamic stream visualization for monitoring of event data. In: Wong, P.C., et al. (eds.) Visualization and Data Analysis 2012, vol. 8294, pp. 13–24. International Society for Optics and Photonics, SPIE (2012). https://doi.org/10.1117/12.912372

  18. Martín, Y., Li, Z., Cutter, S.L.: Leveraging twitter to gauge evacuation compliance: spatiotemporal analysis of Hurricane Matthew. PLoS ONE 12(7), 1–22 (2017). https://doi.org/10.1371/journal.pone.0181701

    Article  Google Scholar 

  19. Miranda, F., et al.: Time lattice: a data structure for the interactive visual analysis of large time series. Comput. Graph. Forum 37(3), 23–35 (2018). https://doi.org/10.1111/cgf.13398

    Article  Google Scholar 

  20. Miranda, F., Lins, L.D., Klosowski, J.T., Silva, C.T.: Topkube: a rank-aware data cube for real-time exploration of spatiotemporal data. IEEE Trans. Vis. Comput. Graph. 24(3), 1394–1407 (2018). https://doi.org/10.1109/TVCG.2017.2671341

    Article  Google Scholar 

  21. Moritz, D., Howe, B., Heer, J.: Falcon: balancing interactive latency and resolution sensitivity for scalable linked visualizations. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, 04–09 May 2019, p. 694 (2019). https://doi.org/10.1145/3290605.3300924

  22. Moshtaghi, M., Bezdek, J.C., Erfani, S.M., Leckie, C., Bailey, J.: Online cluster validity indices for performance monitoring of streaming data clustering. Int. J. Intell. Syst. 34(4), 541–563 (2019). https://doi.org/10.1002/int.22064. https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22064

  23. Ponciano, J.R., Linhares, C.D.G., Rocha, L.E.C., Faria, E.R., Travençolo, B.A.N.: A streaming edge sampling method for network visualization. Knowl. Inf. Syst. 63(7), 1717–1743 (2021). https://doi.org/10.1007/s10115-021-01571-7

    Article  Google Scholar 

  24. Sacha, D., et al.: What you see is what you can change: human-centered machine learning by interactive visualization. Neurocomputing 268, 164–175 (2017)

    Article  Google Scholar 

  25. Tableau Software: Tableau-interactive-visualization-examples (2003). https://www.tableau.com/learn/articles/interactive-map-and-data-visualization-examples

  26. Steed, C.A., et al.: Web-based visual analytics for extreme scale climate science. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 383–392 (2014). https://doi.org/10.1109/BigData.2014.7004255

  27. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 287–297. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2016). https://doi.org/10.1145/2872427.2883041

  28. Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.: Gaussian cubes: real-time modeling for visual exploration of large multidimensional datasets. IEEE Trans. Vis. Comput. Graph. 23(1), 681–690 (2017). https://doi.org/10.1109/TVCG.2016.2598694

    Article  Google Scholar 

  29. Zheng, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: Proceedings of the 10th ACM Conference on Ubiquitous Computing (Ubicomp 2008) (2008). https://www.microsoft.com/en-us/research/publication/understanding-mobility-based-on-gps-data/

  30. Zheng, Y., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of International conference on World Wide Web 2009 (2009). https://www.microsoft.com/en-us/research/publication/mining-interesting-locations-and-travel-sequences-from-gps-trajectories/

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (62172155, 62072465, 62102425), the Science and Technology Innovation Program of Hunan Province (2021RC2071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, F., Liu, F., Zhou, T., Wang, Y., Chen, L. (2023). An Interactive Visualization System for Streaming Data Online Exploration. In: Longfei, S., Bodhi, P. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-34776-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34776-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34775-7

  • Online ISBN: 978-3-031-34776-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics