Skip to main content

RF-Eye: Training-Free Object Shape Detection Using Directional RF Antenna

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2022)

Abstract

Detecting object shape presents significant values to applications such as Virtual Reality, Augmented Reality and surveillance. Traditional solutions usually deploy camera on site and apply image processing algorithms to obtain object shape. Wearable solutions require target to wear some devices, and apply machine learning algorithms to train and recognize object behaviors. The recent advances in Radio Frequency (RF) technology offer a device-free solution to detect object shape, however a number of research challenges exist. This paper presents RF-Eye, a novel RF-based system to detect object shape without training in indoor environments. We design and implement Linear Frequency Modulated baseband signal, making it suitable for detecting object shape. We also apply the narrow pulse signal reflections and Doppler Frequency Shift to detect the full image of object shape. We implement RF-Eye on a Universal Software Radio Peripheral device. Our experimental results show that RF-Eye achieves 100% successful rate, and it performance is reliable in complicated cases.

This research was supported in part by NSFC 61872247.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adib, F., Hsu, C.Y., Mao, H., Katabi, D., Durand, F.: Capturing the human figure through a wall. ACM Trans. Graphics 34(6), 1–13 (2017)

    Google Scholar 

  2. Adib, F., Kabelac, Z., Katabi. D.: Multi-person localization via RF body reflections. In: USENIX Conference on Networked Systems Design and Implementation, pp. 279–292 (2015)

    Google Scholar 

  3. Adib, F., Kabelac, Z., Katabi, D., Miller, R.C.: 3D tracking via body radio reflections. In: 11th USENIX Symposium on Network Systems design and Implementation, pp. 317–329 (2014)

    Google Scholar 

  4. Appleby, R., Anderton, R.N.: Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007)

    Article  Google Scholar 

  5. Biot, M.A.: Some new aspects of the reflection of electromagnetic waves on a rough surface. J. Appl. Phys. 28(12), 1455–1463 (1957)

    Article  Google Scholar 

  6. Cooper, K.B., et al.: Penetrating 3-d imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008)

    Article  Google Scholar 

  7. Davis, D.: A real-time regenerative response method of equalizing a sound system. J. Audio Eng. Soc. 23, 300–2 (1975)

    Google Scholar 

  8. Davies, H.: The reflection of electromagnetic waves from a rough surface. Proc. IEE Part III: Radio Commun. Eng. 101(70), 118 (2010)

    Google Scholar 

  9. Dengler, R.J., et al.: 600 GHz imaging radar with 2 cm range resolution. In: Microwave Symposium, 2007. IEEE/MTT-S International, pp. 1371–1374 (2007)

    Google Scholar 

  10. Farid, H., Simoncelli, E.P.: optimally rotation-equivariant directional derivative kernels. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 207–214. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63460-6_119

    Chapter  Google Scholar 

  11. Gall, J., Stoll, C., De Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion capture using joint skeleton tracking and surface estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1753 (2009)

    Google Scholar 

  12. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: Computer Vision and Pattern Recognition, pp. 755–762 (2010)

    Google Scholar 

  13. Goertz, D.E., Cherin, E., Needles, A., Karshafian, R., Brown, A.S., Burns, P.N., Foster, F.S.: High frequency nonlinear b-scan imaging of microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 52(1), 65–79 (2005)

    Article  Google Scholar 

  14. Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M.: Markerless motion capture with unsynchronized moving cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 224–231 (2009)

    Google Scholar 

  15. Huang, D., Nandakumar, R., Gollakota, S.: Feasibility and limits of Wi-Fi imaging. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 266–279 (2014)

    Google Scholar 

  16. Katzin, M.: The Scattering of Electromagnetic Waves From Rough Surfaces. Pergamon Press (1963)

    Google Scholar 

  17. bibitemch28Kraus2002Antennas Kraus, J.D., Marhefka, R.J.: Antennas For All Applications. Mcgraw, -1 (2002)

    Google Scholar 

  18. Lin, Q.I., Ran, T., Zhou, S., Yue, W.: Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. China 47(2), 184–198 (2004)

    Google Scholar 

  19. bibitemch28Lustig2007Sparse Lustig, M., Donoho, D., Pauly. J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Mag. Reson. Med. 58(6):1182C1195 (2007)

    Google Scholar 

  20. Moses, R.L., Potter, L.C., Chiang, H.C., Koets, M.A., Sabharwal, A.: A parametric attributed scattering center model for SAR automatic target recognition. In: Proceedings of the Image Understanding Workshop, pp. 849–860 (1998)

    Google Scholar 

  21. Mozzo, P., Procacci, C., Tacconi, A., Martini, P.T., Andreis, I.A.: A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur. Radiol. 8(9), 1558 (1998)

    Article  Google Scholar 

  22. Prewitt, J.: Object enhancement and extraction. In: Object Enhancement and Extraction. Picture Processing and Psychopictorics, vol. 10, pp. 15–19 (1970)

    Google Scholar 

  23. Proakis, J.G., Salehi, M.: Digital communications. Digit. Commun. 73(11), 3–5 (2015)

    Google Scholar 

  24. Ralston, T.S., Charvat, G.L., Peabody, J.E.: Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system. In: IEEE International Symposium on Phased Array Systems and Technology, pp. 551–558 (2010)

    Google Scholar 

  25. Raskar, R., et al.: Prakash:lighting aware motion capture using photosensing markers and multiplexed illuminators. Acm Trans. Graphics 26(3), 36 (2007)

    Article  Google Scholar 

  26. Ratnapalan, S., Bentur, Y., Koren. G.: Doctor, will that x-ray harm my unborn child?. Can. Med. Assoc J. l’Association medicale canadienne, 179(12), 1293 (2008)

    Google Scholar 

  27. Roetenberg, D., Luinge, H., Slycke, P., Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. Xsens Motion Technologies Bv (2009)

    Google Scholar 

  28. Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  29. Tse, D., Viswanath, P.: Fundamentals of Wireless Communications, vol. 3, pp. B6–1 - B6–5 (2005)

    Google Scholar 

  30. Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W.: Practical motion capture in everyday surroundings. In: ACM SIGGRAPH, pp. 35 (2007)

    Google Scholar 

  31. Vlasic, D., Baran, I., Matusik, W.: Articulated mesh animation from multi-view silhouettes. Acm Trans. Graphics 27(3), 1–9 (2008)

    Article  Google Scholar 

  32. bibitemch28Wang:2014:WHY:2639108.2639112 Wang, G., Zou, Y., Zhou, Z., Wu, K., Ni, L.M.: We can hear you with Wi-Fi! In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom 2014, pp. 593–604, New York, NY, USA. ACM (2014)

    Google Scholar 

  33. Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., Liu, H.; E-eyes: device-free location-oriented activity identification using fine-grained Wi fi signatures. In: International Conference on Mobile Computing and NETWORKING, pp. 617–628 (2014)

    Google Scholar 

  34. Wang, Y., Jiang, Y.C.: Detection and parameter estimation of multicomponent LFM signal based on the cubic phase function. Eur. J. Adv. Sig. Proces. 2008(1), 743985 (2008)

    Google Scholar 

  35. White, D.A., Jones, C., Forman, W.: An investigation of cooling flows and general cluster properties from an x-ray image deprojection analysis of 207 clusters of galaxies. Mon. Not. R. Astron. Soc. 292(2), 419 (1997)

    Article  Google Scholar 

  36. Woodward, R.M., et al.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physi. Med. Biol. 47(21), 3853–3863 (2002)

    Google Scholar 

  37. L. Xia, C., Chen, C., Aggarwal, J.K.: Human detection using depth information by Kinect. In: CVPR 2011 Workshops, pp. 15–22, June 2011

    Google Scholar 

  38. Xie, Y., Li, Z., Li. M.: Precise power delay profiling with commodity Wi fi. In: International Conference on Mobile Computing and Networking, pp. 53–64 (2015)

    Google Scholar 

  39. Xie, Y., Li, Z., Li, M., Jamieson, K.: Augmenting wide-band 802.11 transmissions via unequal packet bit protection. In: IEEE INFOCOM 2016 - the IEEE International Conference on Computer Communications, pp. 1–9 (2016)

    Google Scholar 

  40. Ye, M., Wang, H., Deng, N., Yang, X., Yang, R.: Real-time human pose and shape estimation for virtual try-on using a single commodity depth camera. IEEE Trans. Visual. Comput. Graphics 20(4), 550–9 (2014)

    Google Scholar 

  41. Wu, K., Wang, Y., Ni, L.M.: Wifall: device-free fall detection by wireless networks. IEEE Trans Mob. Comput. 16(2), 581–594 (2017)

    Google Scholar 

  42. Zhang, L., Xing, M., Qiu, C.W., Li, J., Bao, Z.: Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci. Remote Sens. Lett. 6(3), 567–571 (2009)

    Google Scholar 

  43. Zhu, Y., Zhu, Y., Zhao, B.Y., Zheng, H.: Reusing 60 GHz radios for mobile radar imaging. In: International Conference on Mobile Computing and NETWORKING, pp. 103–116 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, W., Zhang, D., Ji, P., Gu, T. (2023). RF-Eye: Training-Free Object Shape Detection Using Directional RF Antenna. In: Longfei, S., Bodhi, P. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-34776-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34776-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34775-7

  • Online ISBN: 978-3-031-34776-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics