Skip to main content

Adaptive Orthogonal Basis Scheme for OTFS

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2022)

Abstract

Orthogonal time frequency space (OTFS) modulation can provide significant error performance than orthogonal frequency division multiplexing (OFDM) modulation in the high-speed scenario. However, the fractional Doppler effects cause Doppler diffusion. In this paper, we analyze the Doppler diffusion from both the formula and geometric levels. In order to alleviate Doppler diffusion, we propose an adaptive orthogonal basis scheme by using the Doppler shifts feedback of the receiver. Our scheme alter the matrix of the inverse symplectic finite Fourier transform (ISFFT) by the feedback. This scheme makes it possible to estimate the channel more accurately. In the simulation results, we show that the bit error rate (BER) and block error rate (BLER) performance of our proposed scheme is not affected compared with OTFS. In addition, our scheme can work even if the Doppler domain dimension is limited and the Doppler shifts feedback of the receiver is inaccurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadani, R, et al.: Orthogonal Time Frequency Space Modulation. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6(2016)

    Google Scholar 

  2. Hadani, R., et al.: Orthogonal Time Frequency Space (OTFS) modulation for millimeter-wave communications systems. In: 2017 IEEE MTT-S International Microwave Symposium (IMS), pp. 681–683(2017)

    Google Scholar 

  3. Zhiqiang, W., et al.: Orthogonal time-frequency space modulation: a promising next-generation waveform. IEEE Wirel. Commun. 28(3), 136–144 (2021)

    Google Scholar 

  4. Khammammetti, V., Mohammed, S.: OTFS-based multiple-access in high doppler and delay spread wireless channels. IEEE Wireless Commun. Lett. 8(2), 528–531 (2019)

    Article  Google Scholar 

  5. Monk, A., Hadani, R., Tsatsanis, M., Rakib, S.: OTFS - Orthogonal Time Frequency Space. arXiv:1608.02993. (2016)

  6. Saif Khan, M.: Derivation of OTFS modulation from first principles. IEEE Trans. Veh. Technol. 70(8), 7619–7636 (2021)

    Article  Google Scholar 

  7. Raviteja, P., Phan, K.T., Hong, Y., Viterbo, E.: Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans. Wireless Commun. 17(10), 6501–6515 (2018)

    Article  Google Scholar 

  8. Farhang, A., RezazadehReyhani, A., Doyle, L.E., Farhang-Boroujeny, B.: Low complexity modem structure for ofdm-based orthogonal time frequency space modulation. IEEE Wireless Commun. Lett. 7(3), 344–347 (2018)

    Article  Google Scholar 

  9. Murali, K. R., Chockalingam, A.: On OTFS modulation for high-doppler fading channels. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–10(2018)

    Google Scholar 

  10. Raviteja, P., Viterbo, E., Hong, Y.: OTFS performance on static multipath channels. IEEE Wireless Commun. Lett. 8(3), 745–748 (2019)

    Article  Google Scholar 

  11. Raviteja, P., Phan, K.T., Hong, Y.: Embedded pilot-aided channel estimation for OTFS in delay-doppler channels. IEEE Trans. Veh. Technol. 68(5), 4906–4917 (2019)

    Article  Google Scholar 

  12. Raviteja, P., Phan, K.T., Hong, Y., Viterbo, E.: Embedded delay-doppler channel estimation for orthogonal time frequency space modulation. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2018)

    Google Scholar 

  13. Wenqian, S., Linglong, D., Jianping, A., Pingzhi, F., Robert, W.H.: Channel estimation for orthogonal time frequency space (OTFS) massive MIMO. IEEE Trans. Signal Process. 67(16), 4204–4217 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. 6G Vision and Candidate Technologies White Paper (2021). http://www.caict.ac.cn/english/news/202106/P020210608349616163475.pdf

  15. Yiqing, Z., et al.: Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching. Digital Commun. Netw. 6(3), 253–260 (2020)

    Article  Google Scholar 

  16. Yiqing, Z., Jiangzhou, W., Sawahashi, M.: Downlink transmission of broadband OFCDM Systems-part II: effect of Doppler shift. IEEE Trans. Commun. 54(6), 1097–1108 (2006)

    Article  Google Scholar 

  17. Yixiao, L. and Sen, W. and Jing, J. and Wei, X. and Hang, L.: Doppler Shift Estimation Based Channel Estimation for Orthogonal Time Frequency Space System. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–6(2021)

    Google Scholar 

  18. Raviteja, P., Hong, Y., Viterbo, E., Biglieri, E.: Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS. IEEE Trans. Veh. Technol. 68(1), 957–961 (2019)

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China (No. 61931005) and Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, Y., Wang, S., Jin, J., Long, H. (2023). Adaptive Orthogonal Basis Scheme for OTFS. In: Gao, F., Wu, J., Li, Y., Gao, H. (eds) Communications and Networking. ChinaCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 500. Springer, Cham. https://doi.org/10.1007/978-3-031-34790-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34790-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34789-4

  • Online ISBN: 978-3-031-34790-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics