Skip to main content

A Review of Federated Learning: Algorithms, Frameworks and Applications

  • Conference paper
  • First Online:
Towards new e-Infrastructure and e-Services for Developing Countries (AFRICOMM 2022)

Abstract

In today’s world, artificial intelligence (AI) and machine learning (ML) are being widely adopted at an exponential rate. A key requirement of AI and ML models is data, which often must be in proximity to these models. However, it is not always possible to “bring data to the model”, due to several reasons including legal jurisdictions, or ethical reasons, hence, a “taking the model to the data” might be a viable alternative. This process is called Federate Learning (FL), and it is a ML technique that allows devices or clients to collaboratively learn a shared model from the central server, while keeping the training data local and isolated. This ensures privacy and bandwidth preservation, especially in resource constrained environments. In this paper, a review of FL is done with a view of presenting the aggregation models, frameworks, and application areas, as well as identifying open challenges/gaps for potential research works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Q., Yang, L., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol 10(2), 1–19 (2019)

    Article  Google Scholar 

  2. Zhang, J., Li, C., Robles-Kelly, A., Kankanhalli, M.: Hierarchically fair federated learning. pp. 1–16 (2020)

    Google Scholar 

  3. Galakatos, A., Crotty, A., Kraska, T.: Distributed machine learning. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer, New York (2018). https://doi.org/10.1007/978-1-4614-8265-9_80647

  4. Baccam, N., Gilley, S., Coulter, D., Martens, J.: Distributed training with azure machine learning,” microsoft [Online]. https://docs.microsoft.com/en-us/azure/machine-learning/concept-distributed-training. Accessed 20 Aug 2021

  5. Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., Jararweh, Y.: Federated learning review: fundamentals, enabling technologies, and future applications. Inf. Process. Manage. 59(6), 103061 (2022)

    Article  Google Scholar 

  6. Li, L., Fan, Y., Tse, M., Lin, K.: A review of applications in federated learning. Comput. Ind. Eng. 149(2020), 106854 (2020)

    Article  Google Scholar 

  7. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020). https://doi.org/10.1109/msp.2020.2975749

    Article  Google Scholar 

  8. Gao, Y., Li, W., Yu, B., Bai, H., Xie, Y., Zhang, C.: A survey on federated learning. Knowl. Based Syst. 216 (2021)

    Google Scholar 

  9. Gooday, A.: Federated learning types: Understanding the types of Federated Learning. OpenMind. [Online]. https://blog.openmined.org/federated-learning-types/

  10. Kelvin. Introduction to Federated Learning and Challenges. Towards Data Science (2020). [Online]. https://towardsdatascience.com/introduction-to-federated-learning-and-challenges-ea7e02f260ca

  11. Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., Aguera, B.: Communication-efficient learning of deep networks from decentralized data. International Conference on Artificial Intelligence and Statistics (AISTATS), Florida, 2017

    Google Scholar 

  12. Li, T., Sahu, A., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MSysConference 2020 (2020)

    Google Scholar 

  13. Li, T., Sanjabi, M., Beirami, A., Smith, V.: Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019)

  14. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. In: Conference on Neural Information Processing Systems (NeurIPS 2020) (2020)

    Google Scholar 

  15. V. Smith, C. Chiang, M. Sanjabi and A. Talwalkar, “Federated Multi-Task Learning,” Conf. on Neural Information Processing Systems, California, 2017

    Google Scholar 

  16. [EMNST] Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373 (2017)

  17. [FashionMNST] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  18. [MNST] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradientbased learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  19. [sent140] Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford (2009)

    Google Scholar 

  20. [Shakespare] McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.Y.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (2017)

    Google Scholar 

  21. Liu, Y., Fan, T., Chen, T., Xu, Q., Yang, Q.: FATE: an industrial grade platform for collaborative learning with data protection. J. Mach. Learn. Res. 22(226), 1–6 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Beutel, D., Topal, T., Mathur, A., Qiu, X., et al.: Flower: a friendly federated learning research framework. arXiv preprint arXiv:2007.14390 (2020)

  23. Galtier, M., Marini, C.: Substra: a framework for privacy-preserving, traceable and collaborative machine learning. arXiv preprint arXiv:1910.11567 (2019)

  24. Reina, G., Gruzdev, A., Foley, P., Perepelkina, O., et al.: OpenFL: an open-source framework for federated learning. arXiv:2105.06413 (2021)

  25. TensorFlow. TensorFlow Federated: Machine Learning on Decentralized Data. [Online]. https://www.tensorflow.org/federated. Accessed 1 Aug 2022

  26. Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., et al.: IBM federated learning: an enterprise framework white paper v0. 1. arXiv preprint arXiv:2007.10987.(2020)

  27. Wen, Y., Li, W., Roth, H., Dogra, P.: Federated Learning powered by NVIDIA Clara [Online]. https://developer.nvidia.com/blog/federated-learning-clara/. Accessed 1 Aug 2022

  28. Wu, Q., He, K., Chen, X.: Personalized federated learning for intelligent IoT applications: a cloud-edge based framework. In: IEEE Computer Graphics and Applications (2020)

    Google Scholar 

  29. Jiang, J., Kantarci, B., Oktug, S., Soyata, T.: Federated learning in smart city sensing: challenges and opportunities. Sensors 20 (2020)

    Google Scholar 

  30. Li, Y., Zhou, W., Wang, H., Mi, H., T.: Hospedales, FedH2L: Federated learning with model and statistical heterogeneity (2021)

    Google Scholar 

  31. Shi, W., Dustdar, S.: the promise of edge computing. Computer 49(5), 78–81 (2016)

    Article  Google Scholar 

  32. Qayyum, A., Ahmad, K., Ahsan, M., Al-Fuqaha, A.: Collaborative federated learning for healthcare: multi-modal COVID-19 diagnosis at the edge. J. Open Comput. Soc. 3, 172–184 (2021)

    Google Scholar 

  33. Brisimia, S., Chena, R., Melac, T., Olshevskya, A., Paschalidis, C.: Federated learning of predictive models from federated Electronic Health Records. Int. J. Med. Inform. 112, 59–67 (2018)

    Article  Google Scholar 

  34. Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T., Sylla, I., et al.: Differential privacy-enabled federated learning for sensitive health data. In: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver (2019)

    Google Scholar 

  35. Mammen, P.: Federated learning: opportunities and challenges. In: Association for Computing Machinery, Washington (2021)

    Google Scholar 

  36. X. Zhu, J. Wang, Z. Hong, and J. Xiao, “Empirical Studies of Institutional Federated Learning for Natural Language Processing,” Association for Computational Linguistics, pp. 625–634, 2020

    Google Scholar 

  37. Roman, A.: coMind collaborative machine learning framework (2019)

    Google Scholar 

  38. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  39. Wang, C., Deng, J., Meng, X., Wang, Y., et al.: A Secure and efficient federated learning framework for NLP. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana (2021)

    Google Scholar 

  40. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., et al.: Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), California (2017)

    Google Scholar 

  42. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models. In: ICLR, California (2017)

    Google Scholar 

  43. Saputra, Y., Hoang, D., Nguyen, D., Dutkiewicz, E., et al.: Energy demand prediction with federated learning for electric vehicle networks. In: IEEE Global Communications Conference (GLOBECOM2019), Waikoloa, HI, USA (2019)

    Google Scholar 

  44. Hea, Y., Kockelman, K., Perrine, K.: Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 214, 452–461 (2019)

    Article  Google Scholar 

  45. Li, W., Logenthiran, T., Phan, V., Woo, W.: Implemented IoT-based self-learning home management system (SHMS) for Singapore. IEEE Internet of Things J. 5(3), 2212–2219 (2018)

    Article  Google Scholar 

  46. Kairouz, P., Brendan McMahan, H., Avent, B., Bellet, A., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 4(1), (2021)

    Google Scholar 

  47. Abadi, M., Chu, A., Goodfellow, I., Brendan McMahan, H., et al.: Deep learning with differential privacy. In: ACM Conference on Computer and Communications Security, Vienna (2016)

    Google Scholar 

  48. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., et al.: Practical secure aggregation for federated learning on user-held data. In: International Conference on Neural Info. Processing Systems (NIPS), Barcelona (2016)

    Google Scholar 

  49. Balle, B., Kairouz, P., Brendan McMahan, H., Thakkar, O., Thakurta, A.: Privacy amplification via random check-ins. Neural Info. Process. Syst. 33, 4623–4634 (2020)

    Google Scholar 

  50. Erlingsson, U., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: from local to central differential privacy via anonymity. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2020)

    Google Scholar 

  51. Mohri, M., Sivek, G., Suresh. A.T.: Agnostic federated learning. In: International Conference on Machine Learning, PMLR 2019, pp. 4615–4625 (2019)

    Google Scholar 

  52. Lyu, L., Xu, X., Wang, Q., Yu, H.: Collaborative fairness in federated learning. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS, vol. 12500, pp. 189-204. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-63076-8_14

  53. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on Non-IID. In: ICLR (2020)

    Google Scholar 

  54. Jeong, E., Oh, S., Kim, H., Park, J., et al.: Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data. In: Neural Info. Processing Systems (NIPS), Montreal (2018)

    Google Scholar 

  55. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutho Ntantiso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ntantiso, L., Bagula, A., Ajayi, O., Kahenga-Ngongo, F. (2023). A Review of Federated Learning: Algorithms, Frameworks and Applications. In: Saeed, R.A., Bakari, A.D., Sheikh, Y.H. (eds) Towards new e-Infrastructure and e-Services for Developing Countries. AFRICOMM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 499. Springer, Cham. https://doi.org/10.1007/978-3-031-34896-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34896-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34895-2

  • Online ISBN: 978-3-031-34896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics