Skip to main content

Virtual Fences: A Systematic Literature Review

  • Conference paper
  • First Online:
Towards new e-Infrastructure and e-Services for Developing Countries (AFRICOMM 2022)

Abstract

Virtual fencing is a technique for animal control where a physical infrastructure is not needed to implement a fence. Control is achieved by modifying the behavior of the animal by means of one or more sensory signals, which may be auditory and/or electrical. These signals are transmitted to the animal when it tries to cross an electronically constructed boundary. This demarcation can be of any shape that respects geometric properties. While invisible to the naked eye, it is detectable by an electronic device worn by the animal. Due to its potential, this notion of virtual fencing for the management of free-range livestock is attracting growing interest in the literature. First, he advanced ecological management by transforming physical labor into cognitive labor. It is proved that there is a considerable number of methods that rely on stress in the growth of virtual fences, which can be classified in three classes: the first one is interested in virtual fences that focus on auditory stimuli, the second one is the one that depends on electrical stimuli and the third class merges both. These three categories can be divided into two classes: the first class relates to static virtual fences and the second class relates to dynamic virtual fences. The purpose of this work is to first provide an overview of the existing approaches inherent to virtual fences while noting their technical characteristics, advantages and disadvantages. Then, we compare the different virtual fencing approaches and the associated localization/delimitation techniques. Finally, we discuss the remaining challenges for optimal animal control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerber James, S., et al.: Increasing importance of precipitation variability on global livestock grazing lands. Nat. Climate Change. 30(1), 91758–6798 (2018)

    Google Scholar 

  2. Medeiros, I., Fernandez-Novo, A.: Susan@articleboutrais1990derriere, title=Derrière les clôtures...: essai d’histoire comparée de ranchs africains, author=Boutrais, Jean, journal=Cahiers des sciences humaines, volume=26, number=1-2, pages=73-95, year=1990 a Astiz, and João Simões. Historical evolution of cattle management and herd health of dairy farms in OECD countries. Veterinary Sci. 9(3), 125 (2022)

    Google Scholar 

  3. Anderson, D.M., Estell, R.E., Holechek, J.L., Ivey, S., Smith, G.B.: Virtual herding for flexible livestock management-a review. Rangeland J. 36(3), 205–221 (2014)

    Google Scholar 

  4. Monod, M.O., Faure, P., Moiroux, L., Rameau, P.: A virtual fence for animals management in rangelands. In: MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference, pages 337–342. IEEE (2008)

    Google Scholar 

  5. Terrasson, G., Villeneuve, E., Pilniere, V., Llaria, A.: Precision livestock farming: a multidisciplinary paradigm. In: Proceedings of the SMART (2017)

    Google Scholar 

  6. Chan, H.T., Rahman, T.A., Arsad, A.: Performance study of virtual fence unit using wireless sensor network in IoT environment. In: 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 873–875. IEEE (2014)

    Google Scholar 

  7. Anderson, D.M.: Virtual fencing-past, present and future1. Rangeland J. 29(1), 65–78 (2007)

    Google Scholar 

  8. McSweeney, D., et al.: Virtual fencing without visual cues: design, difficulties of implementation, and associated dairy cow behaviour. Comput. Electron. Agric. 176, 105613 (2020)

    Google Scholar 

  9. Sattarov, O., et al.: Virtual fence moving algorithm for circulated grazing. In: 2019 International Conference on Information Science a@articlecampbell2019virtual, title=Virtual fencing is comparable to electric tape fencing for cattle behavior and welfare, author=Campbell, Dana LM and Lea, Jim M and Keshavarzi, Hamideh and Lee, Caroline, journal=Frontiers in Veterinary Science, pages=445, year=2019, publisher=Frontiers nd Communications Technologies (ICISCT), pp. 1–6. IEEE (2019)

    Google Scholar 

  10. Umstatter, C.: The evolution of virtual fences: a review. Comput. Electron. Agric. 75(1), 10–22 (2011)

    Article  Google Scholar 

  11. Acosta, N., Barreto, N., Caitano, P., Marichal, R., Pedemonte, M., Oreggioni, J.: Research platform for cattle virtual fences. In: 2020 IEEE International Conference on Industrial Technology (ICIT), pp. 797–802. IEEE (2020)

    Google Scholar 

  12. Adam et Rawnsley Richard Verdon, Megan et Langworthy. Technologie de clôture virtuelle pour le pâturage intensif des vaches laitières en lactation. ii : Effets sur le bien-être et le comportement des vaches. Revue des sciences laitières. 104, 7084–7094 (2021)

    Google Scholar 

  13. Gonçalves, P., Nóbrega, L., Monteiro, A., Pedreiras, P., Rodrigues, P., Esteves, F.: Sheepit, an e-shepherd system for weed control in vineyards: experimental results and lessons learned. Animals 11(9), 2625 (2021)

    Article  Google Scholar 

  14. Vidya, N.L., Meghana, M., Ravi, P., Kumar, N.: Virtual fencing using yolo framework in agriculture field. In: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 441–446. IEEE (2021)

    Google Scholar 

  15. Butler, Z., Corke, P., Peterson, R., Rus, D.: Dynamic virtual fences for controlling cows. In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 513–522. Springer, Heidelberg (2006). https://doi.org/10.1007/11552246_49

    Chapter  Google Scholar 

  16. Correll, N., Schwager, M., Rus, D.: Social control of herd animals by integration of artificially controlled congeners. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 437–446. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69134-1_43

    Chapter  Google Scholar 

  17. Muminov, A., Na, D., Lee, C., Kang, H.K., Jeon, H.S.: Modern virtual fencing application: monitoring and controlling behavior of goats using GPS collars and warning signals. Sensors 19(7), 1598 (2019)

    Article  Google Scholar 

  18. Jurdak, R., et al.: Energy-efficient localization for virtual fencing. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 388–389 (2010)

    Google Scholar 

  19. Ijesunor Akhigbe, B., Munir, K., Akinade, O., Akanbi, L., Oyedele, L.O.: Iot technologies for livestock management: a review of present status, opportunities, and future trends. Big Data Cogn. Comput. 5(1), 10 (2021)

    Google Scholar 

  20. de Marcos, J.M.F., Muñoz, G.R., Tarifa, J.M.M., Stewart, B.G.: Survey on the performance of source localization algorithms (2017)

    Google Scholar 

  21. Marini, D., Cowley, F., Belson, S., Lee, C., Wilson, C.: Comparison of virtually fencing and electrically fencing sheep for pasture management. Animal Production Science (2022)

    Google Scholar 

  22. Llaria, A., Terrasson, G., Arregui, H., Hacala, A.: Geolocation and monitoring platform for extensive farming in mountain pastures. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2420–2425. IEEE (2015)

    Google Scholar 

  23. Naureen, A., Zhang, N., Furber, S., Shi, Q.: A GPS-less localization and mobility modelling (LMM) system for wildlife tracking. IEEE Access 8, 102709–102732 (2020)

    Article  Google Scholar 

  24. Farooq, M.S., Riaz, S., Abid, A., Abid, K., Naeem, M.A.: A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access. 7, 156237–156271 (2019)

    Google Scholar 

  25. Mohamed, S.A.S., et al.: A survey on odometry for autonomous navigation systems. IEEE Access. 7, 97466–97486 (2019)

    Google Scholar 

  26. Bishop-Hurley, G.J., Swain, D.L., Anderson, D.M., Sikka, P., Crossman, C., Corke, P.: Virtual fencing applications: implementing and testing an automated cattle control system. Comput. Electron. Agric. 56(1), 14–22 (2007)

    Google Scholar 

  27. Butler, Z., Corke, P., Peterson, R., Rus, D.: Virtual fences for controlling cows. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 4429–4436. IEEE (2004)

    Google Scholar 

  28. Verdon, M., Horton, B., Rawnsley, R.: A case study on the use of virtual fencing to intensively graze angus heifers using moving front and back-fences. Front. Animal Sci. 2 (2021)

    Google Scholar 

  29. Butler, Z., Corke, P., Peterson, R., Rus, D.: From robots to animals: virtual fences for controlling cattle. Int. J. Robot. Res. 25(5–6), 485–508 (2006)

    Article  Google Scholar 

  30. Anderson, D.M., et al.: Gathering cows using virtual fencing methodologies (2009)

    Google Scholar 

  31. Brunberg, E.I., Bøe, K.E., Sørheim, K.M.: Testing a new virtual fencing system on sheep. Acta Agric. Scand. Sect. A Animal Sci. 65(3–4), 168–175 (2015)

    Google Scholar 

  32. Étude des performances d’une unité de clôture virtuelle utilisant un réseau de capteurs sans fil dans un environnement iot. In: 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 873–875 (2014)

    Google Scholar 

  33. Campbell, D.L.M., Haynes, S.J., Lea, J.M., Farrer, W.J., Lee, C.: Temporary exclusion of cattle from a riparian zone using virtual fencing technology. Animals. 9(1) (2019)

    Google Scholar 

  34. Langrock, R., et al.: Modelling group dynamic animal movement. Methods Ecol. Evol. 5(2), 190–199 (2014)

    Google Scholar 

  35. Fogarty, E.S., Swain, D.L., Cronin, G., Trotter, M.: Autonomous on-animal sensors in sheep research: a systematic review. Comput. Electron. Agric. 150, 245–256 (2018)

    Google Scholar 

  36. John, K., Philip, M., Mathew, M.M., Rajesh, P., Roby, R., Swathy, S.: Comparative study on different techniques for fencing and monitoring moisture content of soil. In: 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), vol. 1, pp. 54–58. IEEE (2019)

    Google Scholar 

  37. Gehring, T.M., VerCauteren, K.C., Cellar, A.C.: Good fences make good neighbors: implementation of electric fencing for establishing effective livestock-protection dogs. Human-Wildlife Interact. 5(1), 106–111 (2011)

    Google Scholar 

  38. Dodd, C.L., Pitchford, W.S., Hocking Edwards, J.E., Hazel, S.J.: Measures of behavioural reactivity and their relationships with production traits in sheep: a review. Appl. Animal Behav. Sci. 140(1–2), 1–15 (2012)

    Google Scholar 

  39. Friha, O., Ferrag, M.A., Shu, L., Maglaras, L.A., Wang, X.: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies. IEEE CAA J. Autom. Sinica. 8(4), 718–752 (2021)

    Google Scholar 

  40. Odintsov Vaintrub, M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., Vignola, G.: Precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal. 15(3), 100143 (2021)

    Google Scholar 

  41. Sharma, A., Jain, A., Gupta, P., Chowdary, V.: Machine learning applications for precision agriculture: a comprehensive review. IEEE Access 9, 4843–4873 (2020)

    Article  Google Scholar 

  42. Quigley, T.M., Reed Sanderson, H., Tiedemann, A.R., McInnis, M.L.: Livestock control with electrical and audio stimulation. Rangelands Arch. 12(3), 152–155 (1990)

    Google Scholar 

  43. Jachowski, D.S., Slotow, R., Millspaugh, J.J.: Good virtual fences make good neighbors: opportunities for conservation. Anim. Conserv. 17(3), 187–196 (2014)

    Article  Google Scholar 

  44. Ranches, J., et al.: Effects of virtual fence monitored by global positioning system on beef cattle behavior. Transl. Animal Sci. 5(Suppl. S1), S144–S148 (2021)

    Google Scholar 

  45. Marini, D., Llewellyn, R., Belson, S., Lee, C.: Controlling within-field sheep movement using virtual fencing. Animals 8(3), 31 (2018)

    Article  Google Scholar 

  46. Marini, D., Cowley, F., Belson, S., Lee, C.: The importance of an audio cue warning in training sheep to a virtual fence and differences in learning when tested individually or in small groups. Appl. Anim. Behav. Sci. 221, 104862 (2019)

    Article  Google Scholar 

  47. Umstatter, C., Morgan-Davies, J., Waterhouse, T.: Cattle responses to a type of virtual fence. Rangeland Ecol. Manage. 68(1), 100–107 (2015)

    Article  Google Scholar 

  48. Doniec, M., Detweiler, C., Vasilescu, I., Anderson, D.M., Rus, D.: Autonomous gathering of livestock using a multi-functional sensor network platform. In: Proceedings of the 6th Workshop on Hot Topics in Embedded Networked Sensors, pp. 1–5 (2010)

    Google Scholar 

  49. Anderson, D.M., Nolen, B., Fredrickson, E., Havstad, K., Hale, C., Nayak, P.: Representing spatially explicit directional virtual fencing (DVF TM) data. In: 24th Annual ESRI International User Conference Proceedings, San Diego, CA (2004)

    Google Scholar 

  50. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

    Google Scholar 

  51. Ghosh, R.K., Das, S.K.: A survey on sensor localization. J. Control Theory Appl. 1 (2010)

    Google Scholar 

  52. Deepa, S., Vitur, H., Navaneeth, K., Vijayrathinam, S.: Animal monitoring based on IoT technologies. Waffen-und Kostumkunde J. 11, 332–336 (2020)

    Google Scholar 

  53. Gao, L., Sun, H., Liu, M.-N., Jiang, Y.: TDOA collaborative localization algorithm based on PSO and newton iteration in WGS-84 coordinate system. In: 2016 IEEE 13th International Conference on Signal Processing (ICSP), pp. 1571–1575. IEEE (2016)

    Google Scholar 

  54. Noureddine Benamrani. Vers un système de projection icosaédral hiérarchique global sans distorsions pour cartographie Web. Ph.D. thesis, Université Laval (2015)

    Google Scholar 

  55. Muminov, A., et al.: Reducing GPS error for smart collars based on animal’s behavior. Appl. Sci. 9(16), 3408 (2019)

    Google Scholar 

  56. Safitri, R.R., Pratiarso, A., Zainudin, A.: Mobile-based smart parking reservation system with rate display occupancy using heuristic algorithm and haversine formula. In: 2020 International Electronics Symposium (IES), pp. 332–339. IEEE (2020)

    Google Scholar 

  57. Hartono, S., Furqan, M., Siahaan, A.P.U., Fitriani, W.: Haversine method in looking for the nearest masjid. Int. J. Recent Trends Eng. Res. (IJRTER) 3(8), 187–195 (2017)

    Article  Google Scholar 

  58. Haversine formula. Wikipédia

    Google Scholar 

  59. Ahmed, A.J., et al.: A review of wireless sensor network. In: 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5. IEEE (2022)

    Google Scholar 

  60. Schwager, M., Detweiler, C., Vasilescu, I., Anderson, D.M., Rus, D.: Data-driven identification of group dynamics for motion prediction and control. J. Field Robot. 25(6–7), 305–324 (2008)

    Google Scholar 

  61. Bhargava, K., Ivanov, S., Kulatunga, C., Donnelly, W.: Fog-enabled WSN system for animal behavior analysis in precision dairy. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 504–510. IEEE (2017)

    Google Scholar 

  62. Yamamoto, R., Ohzahata, S., Kato, T.: Adaptive geo-fencing with local storage architecture on ad hoc networks. In: 2018 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1–4. IEEE (2018)

    Google Scholar 

  63. Abbas, A.H., Habelalmateen, M.I., Jurdi, S., Audah, L., Alduais, N.A.M.: GPS based location monitoring system with geo-fencing capabilities. In: AIP Conference Proceedings, vol. 2173, pp. 020014. AIP Publishing LLC (2019)

    Google Scholar 

  64. Kang, M.W., Chung, Y.W.: An improved hybrid routing protocol combining manet and DTN. Electronics. 9(3), 439 (2020)

    Google Scholar 

  65. Aaser, M.F., et al.: Is virtual fencing an effective way of enclosing cattle? Personality, herd behaviour and welfare. Animals. 12(7), 842 (2022)

    Google Scholar 

  66. Lipschitz, F.: Expanding the field: Virtual fencing as responsive landscape technology

    Google Scholar 

  67. Muminov, A., Na, D., Lee, C., Jeon, H.S.: Virtual fences for controlling livestock using satellite-tracking and warning signals. In: 2016 International Conference on Information Science and Communications Technologies (ICISCT), pp. 1–7. IEEE (2016)

    Google Scholar 

  68. Marsh, R.E.: Fenceless animal control system using GPS locdu bétailation information, February 9 1999. US Patent 5,868,100

    Google Scholar 

  69. Suseendran, G., Balaganesh, D.: Cattle movement monitoring and location prediction system using Markov decision process and IoT sensors. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), pp. 188–192. IEEE (2021)

    Google Scholar 

  70. Campbell, D.L.M., Lea, J.M., Farrer, W.J., Haynes, S.J., Lee, C.: Tech-savvy beef cattle? How heifers respond to moving virtual fence lines. Animals. 7(9), 72 (2017)

    Article  Google Scholar 

  71. Sonia et Bansaye Vincent Berthelot, Geoffroy et Saïd. Comment utiliser les marches aléatoires pour modéliser le mouvement des animaux sauvages. bioRxiv

    Google Scholar 

  72. Nóbrega, L., Tavares, A., Cardoso, A., Gonçalves, P.: Animal monitoring based on IoT technologies. In: 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), pp. 1–5. IEEE (2018)

    Google Scholar 

  73. Kearton, T., Marini, D., Cowley, F., Belson, S., Lee, C.: The effect of virtual fencing stimuli on stress responses and behavior in sheep. Animals. 9(1), 30 (2019)

    Google Scholar 

  74. Sadowski, S., Spachos, P.: RSSI-based indoor localization with the internet of things. IEEE Access 6, 30149–30161 (2018)

    Article  Google Scholar 

  75. Cannizzaro, D., et al.: A comparison analysis of BLE-based algorithms for localization in industrial environments. Electronics 9(1), 44 (2019)

    Article  Google Scholar 

  76. Guvenc, I., Chong, C.-C.: A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 11(3), 107–124 (2009)

    Article  Google Scholar 

  77. Amundson, I., Koutsoukos, X.D.: A survey on localization for mobile wireless sensor networks. In: Fuller, R., Koutsoukos, X.D. (eds) Mobile Entity Localization and Tracking in GPS-less Environnments. MELT 2009. LNCS, vol. 5801, pp. 235–254. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04385-7_16

  78. Zafari, F., Gkelias, A., Leung, K.K.: A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 21(3), 2568–2599 (2019)

    Google Scholar 

  79. Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., Atri, M.: A survey of localization systems in internet of things. Mobile Netw. Appl. 24(3), 761–785 (2019)

    Article  Google Scholar 

  80. Kumarasiri, R., Alshamaileh, K., Tran, N.H., Devabhaktuni, V.: An improved hybrid RSS/TDOA wireless sensors localization technique utilizing Wi-Fi networks. Mob. Netw. Appl. 21(2), 286–295 (2016)

    Google Scholar 

  81. Santos, V.D.N., Neves, B., Fonseca Ferreira, N.M.: Novel RSSI-based localization system for cattle and animal tracking. In: 2019 International Conference in Engineering Applications (ICEA), pp. 1–7. IEEE (2019)

    Google Scholar 

  82. Ojo, M.O., Viola, I., Baratta, M., Giordano, S.: Practical experiences of a smart livestock location monitoring system leveraging GNSS, Lorawan and cloud services. Sensors. 22(1), 273 (2022)

    Google Scholar 

  83. Chai, S., An, R., Du, Z.: An indoor positioning algorithm using Bluetooth low energy RSSI. In: 2016 International Conference on Advanced Materials Science and Environmental Engineering, pp. 274–276. Atlantis Press (2016)

    Google Scholar 

  84. Lehmann, F., Pieczynski, W.: Suboptimal Kalman filtering in triplet Markov models using model order reduction. IEEE Signal Process. Lett. 27, 1100–1104 (2020)

    Article  Google Scholar 

  85. Halcomb, E.J., Andrew, S.: Triangulation as a method for contemporary nursing research. Nurse Res. 13(2) (2005)

    Google Scholar 

  86. Baba, A.I., Wu, F.: Energy-accuracy trade-off in wireless sensor network localization. Int. J. Handheld Comput. Res. (IJHCR) 6(4), 1–18 (2015)

    Google Scholar 

  87. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. John Wiley & Sons (2010)

    Google Scholar 

  88. Mitilineos, S., Kyriazanos, D.M., Segou, O.E., Goufas, J.N., Thomopoulos, S.: Indoor localisation with wireless sensor networks. Progr. Electromagn. Res. 109, 441–474 (2010)

    Google Scholar 

  89. Jondhale, S.R., Jondhale, A.S., Deshpande, P.S., Lloret,J.: Improved trilateration for indoor localization: neural network and centroid-based approach. Int. J. Distrib. Sens. Netw. 17(11), 15501477211053997 (2021)

    Google Scholar 

  90. Liu, R., et al.: Selective AP-sequence based indoor localization without site survey. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2016)

    Google Scholar 

  91. Goldoni, E., Savioli, A., Risi, M., Gamba, P.: Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In: 2010 European Wireless Conference (EW), pp. 71–77. IEEE (2010)

    Google Scholar 

  92. Félix, G., Siller, M., Alvarez, E.N.: A fingerprinting indoor localization algorithm based deep learning. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 1006–1011. IEEE (2016)

    Google Scholar 

  93. Zeng, X., Baoguo, Yu., Liu, L., Qi, X., He, C.: Advanced combination localization algorithm based on trilateration for dynamic cluster network. IEEE Access 7, 180965–180975 (2019)

    Article  Google Scholar 

  94. Gnanasekera, M., Katupitiya, J., Savkin, A.V., Eranga De Silva, A.H.T.: A range-based algorithm for autonomous navigation of an aerial drone to approach and follow a herd of cattle. Sensors. 21(21), 7218 (2021)

    Google Scholar 

  95. Koh, K.C., Cho, H.S.: A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. J. Intell. Robot. Syst. 24(4), 367–385 (1999)

    Google Scholar 

  96. Li, X., Li, X.: Reactive deployment of autonomous drones for livestock monitoring based on density-based clustering. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2421–2426. IEEE (2019)

    Google Scholar 

  97. Molapo, N.A., Malekian, R., Nair, L.: Real-time livestock tracking system with integration of sensors and beacon navigation. Wirel. Pers. Commun. 104(2), 853–879 (2019)

    Google Scholar 

  98. Han, G., Xu, H., Duong, T.Q., Jiang, J., Hara, T.: Localization algorithms of wireless sensor networks: a survey. Telecommun. Syst. 52(4), 2419–2436 (2013)

    Google Scholar 

  99. Michael Buehrer, R., Wymeersch, H., Vaghefi, R.M.: Collaborative sensor network localization: algorithms and practical issues. Proc. IEEE. 106(6), 1089–1114 (2018)

    Google Scholar 

  100. Han, G., Jiang, J., Shu, L., Yongjun, X., Wang, F.: Localization algorithms of underwater wireless sensor networks: a survey. Sensors 12(2), 2026–2061 (2012)

    Article  Google Scholar 

  101. Xia, F., Liu, J., Nie, H., Yonghao, F., Wan, L., Kong, X.: Random walks: a review of algorithms and applications. IEEE Tran. Emerg. Top. Comput. Intell. 4(2), 95–107 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daouda Ahmat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdouna, M., Ahmat, D., Bissyandé, T.F. (2023). Virtual Fences: A Systematic Literature Review. In: Saeed, R.A., Bakari, A.D., Sheikh, Y.H. (eds) Towards new e-Infrastructure and e-Services for Developing Countries. AFRICOMM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 499. Springer, Cham. https://doi.org/10.1007/978-3-031-34896-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34896-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34895-2

  • Online ISBN: 978-3-031-34896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics