Skip to main content

Marine Vessel Detection in Sea Fog Environment Based on SSD

  • Conference paper
  • First Online:
Sensor Systems and Software (S-Cube 2022)

Abstract

Aiming at solving the problem of low marine vessel detection accuracy in the sea fog environment, a deep learning-based anti-fog marine vessel detection method is proposed in this paper by combining defogging preprocessing with marine vessel detection model. Firstly, gated context aggregation network (GCANet) network is used to process the marine vessel image. Then, the processed image is sent to a modified SSD network, wherein anchors are tuned by statistical characteristics of the shape of marine vessel to detect the position of the marine vessel. Furthermore, to alleviate the loss of feature information due to defogging processing, channel attention mechanism based on the squeeze and excitation module (SE) is added to base convolutional layer of SSD. The comprehensive experiments and comparison results show that the proposed G-SEMSSD network is more suitable for marine vessel detection under sea fog environment.

This work is supported by the National Natural Science Foundation of China (Grant 52271306) and Innovative Research Foundation of Ship General Performance (Grant 31422120).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, N., Wang, Y., Er, M.J.: Review on deep learning techniques for marine object recognition: architectures and algorithms. Control. Eng. Pract. 118(3), 104458 (2022)

    Article  Google Scholar 

  2. Huang, H., Zhou, H., Yang, X., Zhang, L., Qi, L., Zang, A.: Faster R-CNN for marine organisms detection and recognition using data augmentation. Neurocomputing 337, 372–384 (2019)

    Article  Google Scholar 

  3. Chen, T., Wang, N., Wang, R., Zhao, H., Zhang, G.: One-stage CNN detector-based benthonic organisms detection with limited training dataset. Neural Netw. 144, 247–259 (2021)

    Article  Google Scholar 

  4. Wang, N., Gao, Y., Yang, C., Zhang, X.: Reinforcement learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints. Neurocomputing 484, 26–37 (2022)

    Article  Google Scholar 

  5. Huang, Y., Chen, L., Chen, P., Negenborn, R.R., Van Gelder, P.H.A.J.M.: Ship collision avoidance methods: state-of-the-art. Saf. Sci. 121, 451–473 (2020)

    Google Scholar 

  6. Wang, N., Qian, C., Sun, J., Liu, Y.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  7. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  8. Wang, N., Karimi, H.R., Li, H., Su, S.-F.: Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans. Mechatron. 24(3), 1064–1074 (2019)

    Article  Google Scholar 

  9. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  11. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  13. van de Sande, K.E.A., Uijlings, J.R.R., Gevers, T., Smeulders, A.W.M.: Segmentation as selective search for object recognition. In: IEEE International Conference on Computer Vision, pp. 1879–1886 (2011)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  15. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6517–6525 (2017)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement, arXiv preprint arXiv:1804.02767 (2018)

  20. Bochkovskiy, A., Wang, C, Liao, H.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint, arXiv:2004.10934 (2020)

  21. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 99, 2999–3007 (2017)

    Google Scholar 

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10778–10787 (2020)

    Google Scholar 

  24. Wang, N., Er, M.J., Sun, J., Liu, Y.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  25. Wang, X., Zhang, L., Heath, W.P.: Wind turbine blades fault detection using system identification-based transmissibility analysis. Insight-Non-Destructive Test. Condition Monit. 64(3), 164–169 (2022)

    Article  Google Scholar 

  26. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015)

    Article  Google Scholar 

  27. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485 (1994)

    Google Scholar 

  28. Rahman, Z., Jobson, D., Woodell, G.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)

    Article  Google Scholar 

  29. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  30. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. arXiv preprint arXiv:1707.06543 (2017)

  33. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  34. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

    Google Scholar 

  35. Chen, D., et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision, pp. 1375–1383 (2019)

    Google Scholar 

  36. Li, C., Guo, C., Guo, J., Han, P., Fu, H., Cong, R.: PDR-Net: perception-inspired single image dehazing network with refinement. IEEE Trans. Multimedia 22(3), 704–716 (2020)

    Article  Google Scholar 

  37. Chen, X., Lu, Y., Wu, Z., Yu, J., Wen, L.: Reveal of domain effect: How visual restoration contributes to object detection in aquatic scenes. arXiv preprint arXiv:2003.01913 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, N., Tang, L., Wu, W. (2023). Marine Vessel Detection in Sea Fog Environment Based on SSD. In: Karimi , H.R., Wang, N. (eds) Sensor Systems and Software. S-Cube 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 487. Springer, Cham. https://doi.org/10.1007/978-3-031-34899-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34899-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34898-3

  • Online ISBN: 978-3-031-34899-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics