Skip to main content

Recognition of Conformational States of a G Protein-Coupled Receptor from Molecular Dynamic Simulations Using Sampling Techniques

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

Protein structures are complex and dynamic entities relevant to many biological processes. G-protein-coupled receptors in particular are a functionally relevant family of cell membrane proteins of interest as targets in pharmacology. Nevertheless, the limited knowledge about their inherent dynamics hampers the understanding of the underlying functional mechanisms that could benefit rational drug design. The use of molecular dynamics simulations and their analysis using Machine Learning methods may assist the discovery of diverse molecular processes that would be otherwise beyond our reach. The current study builds on previous work aimed at uncovering relevant motifs (groups of residues) in the activation pathway of the \(\beta 2\)-adrenergic (\(\beta _2AR\)) receptor from molecular dynamics simulations, which was addressed as a multi-class classification problem using Deep Learning methods to discriminate active, intermediate, and inactive conformations. For this problem, the interpretability of the results is particularly relevant. Unfortunately, the vast amount of intermediate transformations, in contrast to the number of re-orderings establishing active and inactive conditions, handicaps the identification of relevant residues related to a conformational state as it generates a class-imbalance problem. The current study aims to investigate existing Deep Learning techniques for addressing such problem that negatively influences the results of the predictions, aiming to unveil a trustworthy interpretation of the information revealed by the models about the receptor functional mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  3. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 1–13 (2020)

    Article  Google Scholar 

  4. Congreve, M., de Graaf, C., Swain, N.A., Tate, C.G.: Impact of GPCR structures on drug discovery. Cell 181(1), 81–91 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Durrant, J.D., McCammon, J.A.: Molecular dynamics simulations and drug discovery. BMC Biol. 9(1), 1–9 (2011)

    Article  Google Scholar 

  6. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  Google Scholar 

  7. Gutiérrez-Mondragón, M.A., König, C., Vellido, A.: A deep learning-based method for uncovering GPCR ligand-induced conformational states using interpretability techniques. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2022. LNCS, vol. 13347, pp. 275–287. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07802-6_23

    Chapter  Google Scholar 

  8. Gutiérrez-Mondragón, M.A., König, C., Vellido, A.: Layer-wise relevance analysis for motif recognition in the activation pathway of the \(\beta \)2-adrenergic GPCR receptor. Int. J. Mol. Sci. 24(2), 1155 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasanin, T., Khoshgoftaar, T.: The effects of random undersampling with simulated class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 70–79. IEEE (2018)

    Google Scholar 

  10. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  12. Hollingsworth, S.A., Dror, R.O.: Molecular dynamics simulation for all. Neuron 99(6), 1129–1143 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holzinger, A., Saranti, A., Molnar, C., Biecek, P., Samek, W.: Explainable AI methods-a brief overview. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.R., Samek, W. (eds.) xxAI 2020. LNCS, vol. 13200, pp. 13–38. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04083-2_2

    Chapter  Google Scholar 

  14. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  15. Kohlhoff, K.J., et al.: Cloud-based simulations on google exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6(1), 15–21 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  17. Latorraca, N.R., Venkatakrishnan, A., Dror, R.O.: GPCR dynamics: structures in motion. Chem. Rev. 117(1), 139–155 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Lefkowitz, R.J.: Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25(8), 413–422 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalance problem. Encyclopedia Mach. Learn. 2011, 231–235 (2008)

    Google Scholar 

  20. Mani, I., Zhang, I.: KNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of Workshop on Learning from Imbalanced Datasets, vol. 126, pp. 1–7. ICML (2003)

    Google Scholar 

  21. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)

    Google Scholar 

  22. Rosenbaum, D.M., Rasmussen, S.G., Kobilka, B.K.: The structure and function of g-protein-coupled receptors. Nature 459(7245), 356–363 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torrens-Fontanals, M., Stepniewski, T.M., Aranda-García, D., Morales-Pastor, A., Medel-Lacruz, B., Selent, J.: How do molecular dynamics data complement static structural data of GPCRs. Int. J. Mol. Sci. 21(16), 5933 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Alberto Gutiérrez-Mondragón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez-Mondragón, M.A., König, C., Vellido, A. (2023). Recognition of Conformational States of a G Protein-Coupled Receptor from Molecular Dynamic Simulations Using Sampling Techniques. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics