Skip to main content

Whole Tumor Area Estimation in Incremental Brain MRI Using Dilation and Erosion-Based Binary Morphing

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13919))

Abstract

Magnetic resonance imaging (MRI) technology is rapidly advancing and three-dimensional (3D) scanners started to play an important role on diagnosis. However, not every medical center has access to 3D magnetic resonance imaging (MRI) devices; therefore, it is safe to state that the majority of MRI scans are still two-dimensional. According to the setup values adjusted before any scan, there might be consistent gaps between the MRI slices, especially when the increment value exceeds the thickness. The gap causes miscalculation of the lesion volumes and misjudgments when the lesions are reconstructed in three-dimensional space due to excessive interpolation. Therefore, in this paper, we present the details of three types of conventional morphing methods, one dilation-based and two erosion-based, and compare them to figure out which one provides better solution for filling up the gaps in incremental brain MRI. Among three types of morphing methods, the highest average dice score coefficient (DSC) is calculated as %91.95, which is obtained by the multiplicative dilation morphing method for HG/0004 set of BraTS 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Kreveld, M., Miltzow, T., Ophelders, T., Sonke, W., Vermeulen, J.L.: Between shapes, using the Hausdorff distance. Comput. Geom. 100, 101817 (2022)

    Article  Google Scholar 

  2. Bouts, Q.W., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sonke, W., Verbeek, K.: Mapping polygons to the grid with small Hausdorff and Fréchet distance. In: 24th Annual European Symposium on Algorithms (ESA 2016), pp. 22:1–22:16 (2016)

    Google Scholar 

  3. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Menze, B.H.,et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  5. Cheng, Q., Sun, P., Yang, C., Yang, Y., Liu, P.X.: A morphing-Based 3D point cloud reconstruction framework for medical image processing. Comput. Meth. Program. Biomed. 193, 105495 (2020)

    Article  Google Scholar 

  6. Chavez, T., Bowman, T., Wu, J., Bailey, K., El-Shenawee, M.: Assessment of terahertz imaging for excised breast cancer tumors with image morphing. J. Infrared Millimeter Terahertz Waves 39(12), 1283–1302 (2018)

    Article  Google Scholar 

  7. Cheddad, A.: Structure preserving binary image morphing using Delaunay triangulation. Pattern Recogn. Lett. 85, 8–14 (2017). https://doi.org/10.1016/j.patrec.2016.11.010

    Article  Google Scholar 

  8. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI. Pattern Recogn. 128, 108675 (2022)

    Article  Google Scholar 

  9. Ayadi, W., Elhamzi, W., Charfi, I., Atri, M.: Deep CNN for brain tumor classification. Neural Process. Lett. 53(1), 671–700 (2021)

    Article  Google Scholar 

  10. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Low-contrast lesion segmentation in advanced MRI experiments by time-domain Ricker-type wavelets and fuzzy 2-means. Appl. Intell. (2002a). https://doi.org/10.1007/s10489-022-03184-1

  11. Alpar, O.: A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging. Expert Syst. Appl. 216, 119462 (2023)

    Article  Google Scholar 

  12. Singh, V.K., et al.: Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst. Appl. 139, 112855 (2020)

    Article  Google Scholar 

  13. Alpar, O.: Nakagami imaging with related distributions for advanced thermogram pseudocolorization. J. Therm. Biol 93, 102704 (2020)

    Article  PubMed  Google Scholar 

  14. Pramanik, S., Banik, D., Bhattacharjee, D., Nasipuri, M., Bhowmik, M.K., Majumdar, G.: Suspicious-region segmentation from breast thermogram using DLPE-based level set method. IEEE Trans. Med. Imaging 38(2), 572–584 (2018)

    Article  PubMed  Google Scholar 

  15. Kumar, V., et al.: Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS ONE 13(5), e0195816 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  PubMed  Google Scholar 

  17. Alpar, O., Krejcar, O., Dolezal, R.: Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations. Appl. Soft Comput. 108, 107481 (2021)

    Article  Google Scholar 

  18. Aslani, S., et al.: Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neuroimage 196, 1–15 (2019)

    Article  PubMed  Google Scholar 

  19. Billast, M., Meyer, M.I., Sima, D.M., Robben, D.: Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data. In: International MICCAI Brainlesion Workshop (2019)

    Google Scholar 

  20. Khouloud, S., Ahlem, M., Fadel, T., Amel, S.: W-net and inception residual network for skin lesion segmentation and classification. Appl. Intell. 1–19 (2021). https://doi.org/10.1007/s10489-021-02652-4

  21. Tan, T.Y., Zhang, L., Lim, C.P.: Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks. Knowl. Based Syst. 187, 104807 (2020)

    Article  Google Scholar 

  22. Corbat, L., Nauval, M., Henriet, J., Lapayre, J.C.: A fusion method based on deep learning and case-based reasoning which improves the resulting medical image segmentations.. Expert Syst. Appl. 113200 (2020)

    Google Scholar 

  23. Song, L.I., Geoffrey, K.F., Kaijian, H.E.: Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst. Appl. 145, 113131 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

The work and the contribution were also supported by the SPEV project, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (ID: 2102–2023), “Smart Solutions in Ubiquitous Computing Environments”. We are also grateful for the support of student Michal Dobrovolny in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alpar, O., Krejcar, O. (2023). Whole Tumor Area Estimation in Incremental Brain MRI Using Dilation and Erosion-Based Binary Morphing. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics