Skip to main content

Three-Dimensional Representation and Visualization of High-Grade and Low-Grade Glioma by Nakagami Imaging

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13919))

  • 371 Accesses

Abstract

Three-dimensional (3D) visualization of the brain tumors reconstructed from the two-dimensional (2D) magnetic resonance imaging (MRI) sequences plays an important role in volumetric calculations. The reconstructions are usually executed using the fluid attenuated inversion recovery (FLAIR) sequences, where the whole tumors appear brighter than the healthy surrounding tissues. Without any processing; however, reconstruction results might be inconclusive; therefore, we propose a mathematical m-parametric Nakagami imaging for highlighting the lesions. The raw 2D FLAIR MRI images are taken from BraTS 2012 dataset and the highlighted images are generated by the Nakagami imaging. The information on the MRI slices is compiled in three-layered Nakagami images for better visualization of the high-grade and low-grade glioma in 3D space. By the flexible m-parametric design, on the other hand, the reconstructed images might easily be adjusted according to the GT images for precise representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakagami, M.: The m distribution—a general formula of intensity. In: Statistical Methods in Radio Wave Propagation, Pergamon, pp. 3–36 (1960)

    Google Scholar 

  2. Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 727–736 (2000)

    Article  Google Scholar 

  3. Shankar, P.M.: Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1716–1720 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Yeo, S., Yoon, C., Lien, C.L., Song, T.K., Shung, K.K.: Monitoring of adult zebrafish heart regeneration using high-frequency ultrasound spectral doppler and nakagami imaging. Sensors 19(19), 4094 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, Z., et al.: Hepatic steatosis assessment with ultrasound small-window entropy imaging. Ultrasound Med. Biol. 44(7), 1327–1340 (2018)

    Article  PubMed  Google Scholar 

  6. Zhang, S., et al.: Ex Vivo and In Vivo monitoring and characterization of thermal lesions by high-intensity focused ultrasound and microwave ablation using ultrasonic Nakagami imaging. IEEE Trans. Med. Imaging 37(7), 1701–1710 (2018)

    Article  PubMed  Google Scholar 

  7. Tsui, P.H., et al.: Small-window parametric imaging based on information entropy for ultrasound tissue characterization. Sci. Rep. 7, 41004 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, M., Wang, N., Guo, S., Chang, N., Lu, S., Wan, M.: Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU. Ultrason. Sonochem. 45, 78–85 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. Tsui, P.H., Ho, M.C., Tai, D.I., Lin, Y.H., Wang, C.Y., Ma, H.Y.: Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis. Sci. Rep. 6, 33075 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, H.Y., Lin, Y.H., Wang, C.Y., Chen, C.N., Ho, M.C., Tsui, P.H.: Ultrasound window-modulated compounding Nakagami imaging: resolution improvement and computational acceleration for liver characterization. Ultrasonics 70, 18–28 (2016)

    Article  PubMed  Google Scholar 

  11. Tsui, P.H., Wan, Y.L.: Application of ultrasound nakagami imaging for the diagnosis of fatty liver. J. Med. Ultrasound 24(2), 47–49 (2016)

    Article  Google Scholar 

  12. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Low-contrast lesion segmentation in advanced MRI experiments by time-domain Ricker-type wavelets and fuzzy 2-means. Appl. Intell. (2022a). https://doi.org/10.1007/s10489-022-03184-1

  13. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI. Pattern Recogn. 128, 108675 (2022)

    Article  Google Scholar 

  14. Alpar, O., Krejcar, O., Dolezal, R.: Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations. Appl. Soft Comput. 108, 107481 (2021)

    Article  Google Scholar 

  15. Alpar, O.: A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging. Expert Syst. Appl. 216, 119462 (2023)

    Article  Google Scholar 

  16. Alpar, O.: Nakagami imaging with related distributions for advanced thermogram pseudocolorization. J. Therm. Biol 93, 102704 (2020)

    Article  PubMed  Google Scholar 

  17. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

Download references

Acknowledgment

The work and the contribution were also supported by the SPEV project, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (ID: 2102–2023), “Smart Solutions in Ubiquitous Computing Environments”. We are also grateful for the support of student Michal Dobrovolny in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alpar, O., Krejcar, O. (2023). Three-Dimensional Representation and Visualization of High-Grade and Low-Grade Glioma by Nakagami Imaging. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics