Skip to main content

Motion Control of a Robotic Lumbar Spine Model

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

The study of the movement of the vertebrae of the lumbar spine is classified as a relevant theme for research, considering the possibility of exploring the pathological dysfunctions of this region. This paper presents the development of a trajectory motion control for a lumbar spine model. The spine model is being represented by a 2 DOF (Degrees of Freedom) manipulator robot, which represents the motion of two lumbar vertebrae. For the computational simulations of the controlled spine behavior the mathematical dynamic model of the manipulator based on the Lagrange approach is being considered. Preliminary simulation results show that the implemented conventional controller robustly follows the references given for the angles of the vertebrae, guaranteeing the planned movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akinci, S.Z., Arslan, Y.Z.: Finite element spine models and spinal instruments: a review. J. Mech. Med. Biol. 22(04), 2230001 (2022)

    Article  Google Scholar 

  2. Angst, L.R.: Construção e validação de um modelo experimental da cinesiologia da coluna lombar humana. Dissertação de Mestrado do Programa de Pós-Graduação em Ciências da Saúde da Amazônia Ocidental, UFAC, Brazil (2022)

    Google Scholar 

  3. Bohl, M.A.: Range of motion testing of a novel 3d-printed synthetic spine model. Global Spine J. 10(4), 419–424 (2020)

    Google Scholar 

  4. Chevalier, M., Gómez-Schiavon, M., Ng, A.H., El-Samad, H.: Design and analysis of a proportional-integral-derivative controller with biological molecules. Cell Syst. 9(4), 338–353 (2019)

    Google Scholar 

  5. Clifton, W., Nottmeier, E., Damon, A., Dove, C., Chen, S.G., Pichelmann, M.: A feasibility study for the production of three-dimensional-printed spine models using simultaneously extruded thermoplastic polymers. Cureus 11(4) (2019)

    Google Scholar 

  6. De Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2007)

    Article  PubMed  Google Scholar 

  7. Eremina, G., Smolin, A., Martyshina, I.: Convergence analysis and validation of a discrete element model of the human lumbar spine. Rep. Mech. Eng. 3(1), 62–70 (2022)

    Article  Google Scholar 

  8. Frost, B.A., Camarero-Espinosa, S., Foster, E.J.: Materials for the spine: anatomy, problems, and solutions. Materials 12(2), 253 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galbusera, F., Wilke, H.J.: Biomechanics of the Spine: Basic Concepts, Spinal Disorders and Treatments. Academic Press, Cambridge (2018)

    Google Scholar 

  10. Gao, Z., Gibson, I., Ding, C., Wang, J., Wang, J.: Virtual lumbar spine of multi-body model based on simbody. Procedia Technol. 20, 26–31 (2015)

    Article  Google Scholar 

  11. Ghaleb, N.M., Aly, A.A.: Modeling and control of 2-DOF robot arm. Int. J. Emerg. Eng. Res. Technol. 6(11), 24–31 (2018)

    Google Scholar 

  12. Kakehashi, Y., Okada, K., Inaba, M.: Development of continuum spine mechanism for humanoid robot: biomimetic supple and curvilinear spine driven by tendon. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 312–317. IEEE (2020)

    Google Scholar 

  13. Karadogan, E., Williams, R.L.: The robotic lumbar spine: Dynamics and feedback linearization control. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  14. Okubanjo, A., Oyetola, O., Osifeko, M., Olaluwoye, O., Alao, P.: Modeling of 2-DOF robot arm and control. Fed Univ. Technol. Owerri, J. Ser. (Futojnls) 3(2), 80–32 (2017)

    Google Scholar 

  15. Okyar, F., Guldeniz, O., Atalay, B.: A holistic parametric design attempt towards geometric modeling of the lumbar spine. Comput. Methods Biomech. Biomed. Eng.: Imaging Visual. (2019)

    Google Scholar 

  16. Panjabi, M.M., White, A.A., III.: Basic biomechanics of the spine. Neurosurgery 7(1), 76–93 (1980)

    Article  CAS  PubMed  Google Scholar 

  17. Swain, C.T., Pan, F., Owen, P.J., Schmidt, H., Belavy, D.L.: No consensus on causality of spine postures or physical exposure and low back pain: a systematic review of systematic reviews. J. Biomech. 102, 109312 (2020)

    Article  PubMed  Google Scholar 

  18. Tjessova, M., Minarova, M.: Precising of the vertebral body geometry by using bézier curves. In: Proceedings of Algoritmy, pp. 55–61 (2016)

    Google Scholar 

  19. Urrea, C., Kern, J., Alvarado, J.: Design and evaluation of a new fuzzy control algorithm applied to a manipulator robot. Appl. Sci. 10(21), 7482 (2020)

    Article  CAS  Google Scholar 

  20. White 3rd, A., Panjabi, M.M.: The basic kinematics of the human spine. a review of past and current knowledge. Spine 3(1), 12–20 (1978)

    Google Scholar 

  21. Zhou, C.: Multi-objective design optimization of a mobile-bearing total disc arthroplasty considering spinal kinematics, facet joint loads, and metal-on-polyethylene contact mechanics. Ph.D. thesis, State University of New York at Binghamton (2018)

    Google Scholar 

Download references

Acknowledgment

The work presented in this paper was supported by the PAVIC Laboratory (Pesquisa Aplicada em Visão e Inteligência Computacional) at University of Acre , Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuanne Paixão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paixão, T., Alvarez, A.B., Florez, R., Palomino-Quispe, F. (2023). Motion Control of a Robotic Lumbar Spine Model. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics