Skip to main content

Preliminary Study on the Identification of Diseases by Electrocardiography Sensors’ Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

An electrocardiogram (ECG) is a simple test that checks the heart’s rhythm and electrical activity and can be used by specialists to detect anomalies that could be linked to diseases. This paper intends to describe the results of several artificial intelligence methods created to automate identifying and classifying potential cardiovascular diseases through electrocardiogram signals. The ECG data utilized was collected from a total of 46 individuals (24 females, aged 26 to 90, and 22 males, aged 19 to 88) using a BITalino (r)evolution device and the OpenSignals (r)evolution software. Each ECG recording contains around 60 s, where, during 30 s, the individuals were in a standing position and seated down during the remaining 30 s. The best performance in identifying cardiovascular diseases with ECG data was achieved with the Naive Bays classifier, reporting an accuracy of 81.36%, a precision of 26.48%, a recall of 28.16%, and an F1-Score of 27.29%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulhussein, A.A., Hassen, O.A., Gupta, C., Virmani, D., Nair, A., Rani, P.: Health monitoring catalogue based on human activity classification using machine learning. Int. J. Electr. Comput. Eng. (2088–8708) 12, 3970 (2022)

    Google Scholar 

  2. Ahsan, M.M., Siddique, Z.: Machine learning-based heart disease diagnosis: a systematic literature review. Artif. Intell. Med., 102289 (2022)

    Google Scholar 

  3. Alarsan, F.I., Younes, M.: Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J. Big Data 6(1), 1–15 (2019). https://doi.org/10.1186/s40537-019-0244-x

    Article  Google Scholar 

  4. Alazzam, H., Alsmady, A., Shorman, A.A.: Supervised detection of IoT botnet attacks. In: Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, pp. 1–6 (2019)

    Google Scholar 

  5. Ali, F., et al.: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 63, 208–222 (2020)

    Article  Google Scholar 

  6. Almuhaideb, S., Menai, M.E.B.: Impact of preprocessing on medical data classification. Front. Comp. Sci. 10(6), 1082–1102 (2016). https://doi.org/10.1007/s11704-016-5203-5

    Article  Google Scholar 

  7. Amarappa, S., Sathyanarayana, S.V.: Data classification using support vector machine (SVM), a simplified approach. Int. J. Electron. Comput. Sci. Eng. 3, 435–445 (2014)

    Google Scholar 

  8. Balakumar, P., Maung-U, K., Jagadeesh, G.: Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 113, 600–609 (2016)

    Article  PubMed  Google Scholar 

  9. Batista, D., Plácido da Silva, H., Fred, A., Moreira, C., Reis, M., Ferreira, H.A.: Benchmarking of the BITalino biomedical toolkit against an established gold standard. Healthc. Technol. Lett. 6, 32–36 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Celin, S., Vasanth, K.: ECG signal classification using various machine learning techniques. J. Med. Syst. 42, 1–11 (2018)

    Article  Google Scholar 

  11. Chio, C., Freeman, D.: Machine Learning and Security: Protecting Systems with Data and Algorithms. O’Reilly Media, Inc. (2018)

    Google Scholar 

  12. Da Silva, H.P., Guerreiro, J., Lourenço, A., Fred, A.L., Martins, R.: BITalino: a novel hardware framework for physiological computing. In: International Conference on Physiological Computing Systems (PhyCS), pp. 246–253 (2014)

    Google Scholar 

  13. Duarte, R.P., et al.: Extraction of notable points from ECG data: a description of a dataset related to 30-s seated and 30-s stand up. Data Brief 46, 108874 (2023). https://doi.org/10.1016/j.dib.2022.108874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Escobar, L.J.V., Salinas, S.A.: e-Health prototype system for cardiac telemonitoring. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4399–4402. IEEE, Orlando, FL, USA (2016)

    Google Scholar 

  15. García, V., Mollineda, R.A., Sánchez, J.S.: On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11, 269–280 (2008)

    Article  Google Scholar 

  16. Gardes, J., Maldivi, C., Boisset, D., Aubourg, T., Vuillerme, N., Demongeot, J.: Maxwell®: an unsupervised learning approach for 5P medicine. Stud. Health Technol. Inf. 264, 1464–1465 (2019). https://doi.org/10.3233/SHTI190486

    Article  Google Scholar 

  17. Gautam, M.K., Giri, V.K.: A neural network approach and wavelet analysis for ECG classification. In: 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 1136–1141. IEEE, Coimbatore, India (2016)

    Google Scholar 

  18. Gupta, S.: Evaluation of ECG abnormalities in patients with asymptomatic type 2 diabetes mellitus. JCDR 11, OC39 (2017). https://doi.org/10.7860/JCDR/2017/24882.9740

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Statistics and Its Interface 2, 349–360 (2009). https://doi.org/10.4310/SII.2009.v2.n3.a8

    Article  Google Scholar 

  20. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PTR, USA (1994)

    Google Scholar 

  21. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  PubMed  Google Scholar 

  22. Pires, I.M., Garcia, N.M., Pires, I., Pinto, R., Silva, P.: ECG data related to 30-s seated and 30-s standing for 5P-Medicine project. Mendeley Data (2022). https://data.mendeley.com/datasets/z4bbj9rcwd/1

  23. Jindal, H., Agrawal, S., Khera, R., Jain, R., Nagrath, P.: Heart disease prediction using machine learning algorithms. In: IOP Conference Series: Materials Science and Engineering, p. 012072. IOP Publishing (2021)

    Google Scholar 

  24. Kakria, P., Tripathi, N.K., Kitipawang, P.: A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int. J. Telemed. Appl. 2015, 1–11 (2015). https://doi.org/10.1155/2015/373474

    Article  Google Scholar 

  25. Kalkstein, N., Kinar, Y., Na’aman, M., Neumark, N., Akiva, P.: Using machine learning to detect problems in ECG data collection. In: 2011 Computing in Cardiology, pp. 437–440. IEEE (2011)

    Google Scholar 

  26. Kannathal, N., Acharya, U.R., Ng, E.Y.K., Krishnan, S.M., Min, L.C., Laxminarayan, S.: Cardiac health diagnosis using data fusion of cardiovascular and haemodynamic signals. Comput. Methods Programs Biomed. 82, 87–96 (2006). https://doi.org/10.1016/j.cmpb.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  27. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  28. Pires, I.: Jupyter Notebooks ECG Data (2022)

    Google Scholar 

  29. Pires, I.M., et al.: Mobile 5P-medicine approach for cardiovascular patients. Sensors 21, 6986 (2021). https://doi.org/10.3390/s21216986

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pires, I.M., Garcia, N.M., Flórez-Revuelta, F.: Multi-sensor data fusion techniques for the identification of activities of daily living using mobile devices. In: Proceedings of the ECMLPKDD (2015)

    Google Scholar 

  31. Prescott, G.J., Garthwaite, P.H.: A simple Bayesian analysis of misclassified binary data with a validation substudy. Biometrics 58, 454–458 (2002)

    Article  PubMed  Google Scholar 

  32. Ramaraj, E.: A novel deep learning based gated recurrent unit with extreme learning machine for electrocardiogram (ECG) signal recognition. Biomed. Signal Process. Control 68, 102779 (2021)

    Article  Google Scholar 

  33. Rivas, R.G., Domínguez, J.J.G., Marnane, W.P., Twomey, N., Temko, A.: Real-time allergy detection. In: 2013 IEEE 8th International Symposium on Intelligent Signal Processing, pp. 21–26. IEEE (2013)

    Google Scholar 

  34. Swapna, G., Soman, K.P., Vinayakumar, R.: Diabetes detection using ECG signals: an overview. In: Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A. (eds.) Deep Learning Techniques for Biomedical and Health Informatics. SBD, vol. 68, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33966-1_14

    Chapter  Google Scholar 

  35. Tran, T.M., Le, X.-M.T., Nguyen, H.T., Huynh, V.-N.: A novel non-parametric method for time series classification based on k-nearest neighbors and dynamic time warping barycenter averaging. Eng. Appl. Artif. Intell. 78, 173–185 (2019)

    Article  Google Scholar 

  36. Twomey, N., Temko, A., Hourihane, J.O., Marnane, W.P.: Allergy detection with statistical modelling of HRV-based non-reaction baseline features. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 1–5 (2011)

    Google Scholar 

  37. Villasana, M.V., Sá, J., Pires, I.M., Albuquerque, C.: The New Era of Technology Applied to Cardiovascular Patients: State-of-the-Art and Questionnaire Applied for a System Proposal, pp. 267–278. Springer International Publishing, Cham (2021)

    Google Scholar 

  38. Vogel, B., et al.: The Lancet women and cardiovascular disease commission: reducing the global burden by 2030. The Lancet 397, 2385–2438 (2021)

    Article  Google Scholar 

  39. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005). https://doi.org/10.1007/s10994-005-4258-6

    Article  Google Scholar 

  40. Neurophysiological Data Analysis with NeuroKit2 — NeuroKit2 0.2.1 documentation. https://neuropsychology.github.io/NeuroKit/. Accessed 10 Jul 2022

Download references

Acknowledgments

This work is funded by FCT/MEC through national funds and co-funded by FEDER – PT2020 partnership agreement under the project UIDB/50008/2020.

This work is also funded by FCT/MEC through national funds and co-funded by FEDER – PT2020 partnership agreement under the project UIDB/00308/2020.

This article is based upon work from COST Action CA19101 - Determinants of Physical Activities in Settings (DE-PASS), supported by COST (European Cooperation in Science and Technology). More information on www.cost.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Miguel Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto, R.J. et al. (2023). Preliminary Study on the Identification of Diseases by Electrocardiography Sensors’ Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics