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Abstract. We introduce the Coherent Multi-representation Problem (CMP), whose

solutions allow us to observe simultaneously different geometrical representa-

tions for the vertices of a given simple graph. The idea of graph multi-representation

extends the common concept of graph embedding, where every vertex can be

embedded in a domain that is unique for each of them. In the CMP, the same

vertex can instead be represented in multiple ways, and the main aim is to find a

general multi-representation where all the involved variables are “coherent” with

one another. We prove that the CMP extends a geometrical problem known in the

literature as the distance geometry problem, and we show a preliminary computa-

tional experiment on a protein-like instance, which is performed with a new Java

implementation specifically conceived for graph multi-representations.

1 Introduction

In several applications, given a certain number of constraints involving a given set of

objects, the main goal is to identify suitable geometrical representations for such ob-

jects. This work takes as a starting point the works in the context of Distance Geometry

(DG), where embeddings of a given graph G in a Euclidean space need to be defined in

such a way to satisfy a certain number of distance constraints, where the distance metric

is generally the Euclidean norm [10].

Among the DG applications, the traditional ones (i.e. the ones that mostly appear in

the scientific literature) are the applications in structural biology and sensor networks.

Experimental techniques such as Nuclear Magnetic Resonance (NMR) can in fact pro-

vide estimates on the proximity between atom pairs in a given molecule, so that looking

for molecular conformations satisfying these distance constraints is a problem falling

in the context of DG [3, 15]. In sensor networks, the radio signals between two mobile

antennas can also provide proximity information, so that localizing the sensors from

the estimated distances is basically this very same problem, where the only difference

can be found in the quality of the distances that come to play in the definition of the

constraints [2, 13]. Other emerging DG applications include acoustic networks [4] and

their use in robotics [5], as well as the recent adaptive maps [8].

The motivation for this work comes from the observation that distances are not the

only type of information that is given for the definition of the geometric constraints. In

structural biology, not only distances are available, but also a certain number of torsion

angles formed by quadruplets of atoms in the molecule [11], named dihedral angles.
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Under certain assumptions, these torsion angles may be converted to distances [7], and

the obtained distances may simply be used together with the original distance informa-

tion. However, conversion procedures cannot guarantee that the performed conversions

are lossless. For this reason, we found the need to define a more general problem, where

one can deal with several types of information at the same time.

Even though the focus of this work is mostly on the application in structural biology,

it is important to point out that the necessity to consider different types of information

for the definition of the geometric constraints is also valid for other applications. In

sensor networks, in spite of the fact that several works only focus on distances (see for

example [9]), there is another type of information that can be measured: the angle-of-

arrival of the radio signal on the antennas [13].

The main DG problem, known in the literature under the acronym DGP, asks whether

it is possible to find an embedding x : V → R
K for a simple weighted undirected graph

G = (V,E,d) such that the distances between two embedded vertices u and v ∈V corre-

spond to the edge weights given by the weight function d. It is generally supposed that

G is connected, otherwise the DGP could simply be divided in as many sub-problems

as the number of disconnected components in the graph. In some special situations, the

properties of G allow us to discretize the search space for potential embeddings x of the

graph [14], and this is possible through the introduction of ad-hoc vertex orders on G

[6, 18]. In this work, we will suppose that a vertex order on G is available, and that it is

given through the orientation of the edges of the graph. In other words, we will suppose

that our graphs are directed, and hence denote their arcs with the symbol (u,v) ∈ E .

The Coherent Multi-representation Problem (CMP) is therefore introduced in this

work to provide new theoretical basis for the solution of problems arising in the ap-

plications mentioned above where different types of information can be employed at

the same time. Differently from the DGP, the CMP does not make any net distinction

between known (e.g. the distances) and unknown information (e.g. the embedding), but

it actually represents the full piece of information in one unique multi-representation

system. Thus, a solution to the CMP is a set of values for the internal variables for the

several employed representations that turns out to be “coherent” (see Section 2).

This work comes with the initial commit of a new public GitHub repository con-

taining some Java classes implementing the multi-representation system (see Section 3).

Throughout the paper, we make reference to types of representations for the vertices that

are typical in applications in structural biology, and a very preliminary computational

experiment on a protein-like helical model is commented in Section 4. Finally, some

future research directions are given in Section 5.

We point out that the idea of employing multi-representations is not completely new

in the scientific literature. One important example is given by the works in education

and learning [1], where the idea to have complementary representations for the same

object, and to simultaneously exploit the advantages that each of them can give, is

already explored. In computer science, an example of multi-representation can be found

in [20], where some geographic maps at different levels of resolution are managed in

one unique database. Some map representations, however, may not be compatible, and

they may need to be reused independently from each other. In this work, there is one

important aspect that comes to play: we attempt to have the several representations
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for a single object to be compatible to one another at all times. To this purpose, we

introduce the idea of “coherence” for all involved vertex representations. A similar idea

was previously exploited in the context of education in [19].

2 Coherent Multi-representation Problem

Let G = (V,E) be a simple directed graph, where the orientation of its arcs gives us

the information about the ordering of the vertices in V . We exploit in this work the fact

that each vertex of G can be embedded in the traditional Euclidean space by employing

different types of coordinate systems. The most common naturally is the Cartesian co-

ordinate system, but others are also possible. One alternative coordinate system that we

will use in the following for our case study in dimension 3 is given by the well-known

spherical coordinates, where the location of the vertex v∈V is relative to another vertex

u, and it is defined through the distance and the relative orientation of v w.r.t. u in the

given Cartesian system. Another representation that we use is through torsion angles

[12]. In order to switch from one coordinate system to another, coordinate transforma-

tions can be applied.

We use the symbol Y for the definition domain of a given coordinate system. Notice

that the dimension of Y may differ from the dimension of the original Euclidean space

R
K . An example where these two dimensions are different is given for example by the

representation through torsion angles, where the Euclidean space has dimension 3 and

the torsion domain has only one dimension. We refer to a coordinate transformation,

capable to convert the coordinates from one system to another, as a triplet (P,Y, f ),
where P is the set of parameters, Y is the coordinate domain, and f is the mapping:

f : (p,y) ∈ P×Y −→ x ∈ R
K
,

that performs the transformation from the variables y ∈ Y to the standard Cartesian

coordinates, denoted by x as in the Introduction.

We remark that the trivial transformation (P,Y, f ), where P= /0, Y =R
K and f is the

identity function, maps Cartesian coordinates into the same Cartesian coordinates. The

spherical coordinates require a reference vertex u for a given vertex v ∈ V , so that the

Cartesian coordinates of u need, as a consequence, to be included in P. For the definition

of torsion angles, the parameter set P contains much more information, which we omit

to comment here for lack of space; the interested reader can find all the necessary details

in [12]. In the following, we will refer to the triplets (P,Y, f ) as transformations, as well

as “representations” for a given vertex v.

The definition domains Y can encapsulate geometric constraints, so that the cor-

responding y variables are only able to cover restricted regions. For example, simple

constraints in R
K can define box-shaped regions. In dimension 3, simple constraints on

the distance involved in the definition of the spherical coordinates allow us to control

the relative distance between the two involved vertices. Also, simple constraints on the

possible values of torsion angles allow us to define arc-shaped regions of the original

Euclidean space. For values for y that are not in the delimited region Y , we can con-

sider the existence of a projection operator that projects those values on the allowed

coordinate space Y .
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One peculiarity in this work consists in associating vertex representations to the arcs

of the graph G, and not its vertices. Let Ê be the set obtained as the union of E with the

set {(v,v) : v ∈V}; we will use the subscripts e= (u,v)∈ Ê to make reference to vertex

representations (Pe,Ye, fe) that are related to a specific arc of the graph. The predecessor

u of v in the arc e is supposed to play the role of reference in the representation of

the vertex v. Notice that, for the torsion angle case, there are actually three reference

vertices, but it makes sense to associate the torsion angle to the arc (u,v) where u is

the farthest reference in the vertex order induced by the orientation of the arcs. Finally,

representations which make use of no reference vertices, as it is the case for Cartesian

coordinates, can be associated to the added arcs of the type (v,v) ∈ Ê.

For a given arc e ∈ Ê , we can define multiple representations for this same arc;

we will use superscripts to distinguish among the various employed representations.

The number of representations for the each arc e can vary: there can be only one, or

several, or even no one. However, this last situation is generally to be avoided, for some

information encoded by the graph would not be exploited in this case. Naturally, all

functions fe involved in the vertex representations need to have a common codomain,

which is predetermined and set to R
K in this work.

Definition 2.1. Given a vertex v ∈ V and one of the arcs e = (u,v) ∈ Ê, a “vertex

multi-representation” in dimension K > 0 and w.r.t the arc e is the set

Ξe =
{

(P1
e ,Y

1
e , f 1

e ), . . . ,(P
r
e ,Y

r
e , f r

e )
}

containing r different vertex representations related to the arc e. The “expected” Carte-

sian coordinates for Ξe are given by the function:

ξe : (y1
e , . . . ,y

r
e) ∈ Y 1

e × . . .Y r
e −→

1

r

r

∑
i=1

f i
e(pi

e,y
i
e) ∈ R

K
, (1)

where pi
e ∈ Pi

e, for each i. We say that the set of internal coordinates ye = (y1
e , . . . ,y

r
e) is

“coherent” if

∀i ∈ {1, . . . ,r}, ξe(ye) = f i
e(pi

e,y
i
e).

Vertex multi-representations allow us to simultaneously associate several types of rep-

resentations to the same vertex v of the graph. For example, the use of spherical coordi-

nates can help controling the distance between v and its reference u, while v can at the

same time also be represented through a torsion angle. Recall that the domain Y associ-

ated to the transformations makes it possible to restrict the region of feasibility for the

variables. In some special cases, the domain Y may allow some variables to take only

value, thus indicating that the value for this variable is actually known (or imposed).

Def. 2.1 can be trivially extended to all the arcs in the edge set Ê , so that a multi-

representation for all the vertices v ∈V , and for all arcs e = (u,v) ∈ Ê , can be defined.

When we extend to the entire graph G, we can notice that there are actually two levels of

multiplicity for the representations. Firstly, for a given arc (u,v) ∈ Ê , several different

representations can be defined, as commented a few lines above. Moreover, the second

level of multiplicity comes from the fact that at least one representation is expected to

be defined for every arc in Ê, and hence there will be at least as many representations

for v as there are arcs (u,v) ∈ Ê having v as a destination vertex.
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When all arcs in Ê are involved, we say that the set of vertex multi-representations

ΞG =∪e∈Ê Ξe forms a “graph multi-representation”. The function in equ. (1) can also be

extended to the entire graph, and we will refer to it with the symbol ξG. The input of ξG

is a vector ȳ combining all the variables yi
e, for each arc e ∈ Ê and each representation

(indexed by i). We say therefore that ȳ is coherent if all its components are coherent

(see Def. 2.1).

The only possibility for the function ξG to be equivalent to a standard graph em-

bedding is when the graph is trivial. This situation is naturally of no interest, and we

will therefore suppose that our graphs G are non-trivial. The graph multi-representation

evidently allows for a richer representation of the graph, which explicitly exploits the

connectivity information encoded by the graph, which is instead not taken into consid-

eration by standard graph embeddings.

Definition 2.2. Given a simple directed graph G=(V,E) and a graph multi-representation

ΞG in dimension K > 0, the Coherent Multi-representation Problem (CMP) asks whether

there exists a vector ȳ, composed by the internal variables for the coordinates of the ver-

tex multi-representations in ΞG, that is coherent.

The following result relates the DGP (see Introduction) with the new CMP. An

immediate consequence of this result is that the CMP is NP-hard.

Proposition 2.3. The DGP is a special case of the CMP.

Proof. Let Gdgp =(V,E,d) be a simple weighted undirected graph representing a generic

instance of the DGP. Let G = (V,E) be the same graph Gdgp without the weight func-

tion d, but with directed edges for encoding a suitable vertex order (see Introduction).

If no information about vertex orders on V is available, any order can be used.

We will proceed by constructing a graph multi-representation ΞG. For every v ∈V ,

we assign a representation by Cartesian coordinates to each arc of the type (v,v) ∈ Ê .

For every (u,v) ∈ E , moreover, we assign a representation by spherical coordinates,

where the domain Y encodes the bounds on the distance values given by the weights of

the graph Gdgp. Notice that more than one distance may be known for a given vertex v,

and hence the number of introduced representations by spherical coordinates is likely

to vary vertex per vertex.

By definition, a solution to the so-constructed CMP is a vector ȳ containing the

internal coordinates for all these vertex representations (the introduced Cartesian and

spherical coordinates). The vector ȳ is supposed to be coherent, in the sense that, for

every e ∈ Ê, all functions f i
e are supposed to give the same result. As a consequence,

the expected Cartesian coordinates for the generic vertex v must satisfy all distance

constraints encoded by the spherical coordinates, and they form therefore a solution to

the original DGP. �

3 An object-oriented implementation

A quick search on the Internet can reveal the existence of several freely distributed im-

plementations for storing graph structures, in several low and high level programming
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languages. For this work, we opt for a completely new implementation which does not

only allow us to store the graph structure, but also the several vertex representations that

we can associate to its arcs. Moreover, our implementation exploits an internal notifi-

cation system for keeping all vertex representations updated. Naturally, it is not always

possible to keep all vertex representations in a coherent state. We have implemented

specific methods for this verification.

The notification system acts at two levels: it makes sure that all representations for

the same vertex are synchronized (as far as this is possible), and it notifies other vertex

representations, that use the modified vertex as a reference, of the performed change.

These other representations will have to update their internal state in order to consider

the new information provided by their references.

The language we have chosen is Java for its object-oriented paradigm and for its

relative simplicity; specific syntax related to more recent versions of Java have been

avoided, so that translations to other languages supporting classes, encapsulation and

inheritance will potentially be easy to perform. The Java codes are available on a public

GitHub repository1. The current implementation focuses on coordinate systems in a

three-dimensional Euclidean space only.

The main class in our Java code is the Coordinates class. As its name suggests,

this class is supposed to hold information, and to perform actions on, the numerical

values employed for the various vertex representations. The peculiarity of this class

is that it contains a certain number of private sub-classes, each defining a particular

representation and some basic methods for their manipulation. We point out that here

we relax the encapsulation principle for the access to the attributes of the sub-classes.

We found in fact that a stricter encapsulation would have led to a more complex and

less efficient code without really adding any level of access security to the data. Notice

however that the encapsulation principle is respected at the level of the Coordinates

class. This class, moreover, contains a certain number of private methods that are not

supposed to be invoked from the outside, which ensure the realization of the notification

system mentioned above.

Every instance of Coordinates can hold several representation types, and for every

type, it can hold several instances for the given type. The only exception is for the

standard Cartesian coordinates, because two instances of the Cartesian coordinates that

are coherent in the same Coordinates object can only be identical. This is however not

true for the spherical coordinates, and for the torsion angles.

Suppose for example that an instance of Coordinates, call it C1, contains three in-

ner representations: one of Cartesian type, one of spherical type, and another of torsion

type. Suppose we wish to position C1 in specific Cartesian coordinates. Our class pro-

vides a method to this purpose, but it does not only limit itself to change the values

of the Cartesian coordinates, it also attempts to adapt all other representations to the

new imposed Cartesian coordinates. In practice, the variables used for the spherical and

torsion types are updated for keeping them compatible with the new Cartesian coordi-

nates. However, as mentioned above, this is not always possible, because the definition

domain of the internal variables may be constrained (through the set Y introduced in

1 https://github.com/mucherino/DistanceGeometry, commit be4e33b, folder javaCMP.
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Section 2, see the BoundedDouble class). When the update fails, then we say that C1 is

not in a coherent state.

Now suppose for simplicity that the current state of C1 is coherent. Suppose that

the reference Coordinates instance for C1, in both spherical and torsion types, is C0.

C0 admits only one representation, whose type is Cartesian. When the Cartesian co-

ordinates of C0 are modified, our notification system sends a “signal” to C1, which is

now supposed to update some of its internal variables. First of all, we can recompute

the Cartesian coordinates of C1, by using the information given by the spherical type.

However, C0 takes also part in the definition of the torsion angle, which may now be

incompatible with the spherical type. All possible updates, for all types in C1, are at-

tempted, but, again, the procedure may fail in leaving C1 in a coherent state. The little

experiment commented in the next section was instead conceived in such a way to

maintain the coherent state for its representations.

The Coordinates class contains methods for verifying whether an instance is in a

coherent state or not, and it can provide, in both situations, its “expected” Cartesian

coordinates via a devoted Java method implementing the formula in Def. 2.1. The in-

terested reader is invited to look directly at the code for additional technical details of

this implementation.

4 A simple experiment

We present in this section a very preliminary experiment performed with our new Java

classes. The details of the experiment can be found on the GitHub repository in the class

named Experiments (please make sure to refer to the commit indicated in the previous

section). Our experiment makes use of the torsion type, which is particularly useful in

the construction of the typical helical structures in protein conformations. The reader

can find other smaller experiments, involving the spherical type as well, in the set of

automatic tests implemented in the main method of the Coordinates class.

In Experiments, we initially construct our helical conformation by simply instanti-

ating a multi-representation for the underlying graph where standard Cartesian coordi-

nates and torsion angles co-exist. We do not give values to the Cartesian coordinates,

we basically only provide the torsion angles, and this action automatically gives us the

model depicted at the bottom of Fig. 1. The interesting point about the experiment is

that the user is only supposed to initialize and set up the values of the torsion angles,

whereas the calculations that allow the construction of the model are automatically per-

formed by our Java code in an attempt to keep the various representations coherent with

one another.

The second model, at the top of Fig. 1, was obtained with one line of code in the

Experiments class, consisting in changing the value for one torsion angle. In this case,

not only the change in one representation type started the updating system within the

same Coordinates instance (the one whose torsion angle was changed), but it also no-

tified, in a chain, all subsequent Coordinates instances, which updated their inner vari-

ables as well.

This automatic synchronization of the various representations can be particularly

useful when implementing solution methods that mainly act on specific coordinate sys-
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Fig. 1. Two helix-like confirmations obtained with our new Java classes.

tems, because it allows for simultaneously controling other vertex representations, by

immediately revealing, for example, that some geometric constraints are consequently

violated.

5 Conclusions

This work introduced the CMP, a new decision problem that extends another very com-

mon and widely studied problem, named the DGP. We showed that the DGP is included

in the CMP, so that the latter inherits the NP-hardness of the former. We have briefly

presented a new Java implementation allowing for vertex multi-representations that are

at the core of the CMP.

Future works will be mainly devoted to the development of solvers for the CMP, by

taking as a starting point some previous works that we have performed in the context

of the DGP (see for example [16]). Moreover, it is also our intention to include other

vertex representations in our implementations, in order to tackle a larger variety of

applications. The realization of this future work is likely to be particularly delicate, for

it may reveal some limitations of our multi-representation approach. In fact, some types

of information may not be capable to uniquely reconstruct the Cartesian coordinates of

the vertices, or at least not with the same precision as the spherical and torsion types

can do. Finally, we also plan to study, in a near future, the use of the CMP in the context

of dynamical problems [17].
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