Abstract
Comprehensive analysis of lipids is becoming a forefront of clinical data analysis. Due to significant technical advancements, lipidomics is emerging in clinical diagnostics for improvement and earlier detection of a broad range of diseases. However, in order to understand the biological complexities and interrelationships between the molecules, it is important to have a correct representation of the data and visualizations that enable good interpretability of the lipidomic data. Therefore, the present study systematically compares different visualization methods for lipidomic data, based on different computational relations between the selected lipids and supplemented with known biological information. Networks were reconstructed, and an analysis was performed to objectively compare the visualizations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Blanksby, S.J., Mitchell, T.W.: Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. 3, 433–465 (2010)
Sethi, S., Brietzke, E.: Recent advances in lipidomics: analytical and clinical perspectives. Prostagland. Other Lipid Mediat. 128, 8–16 (2017)
Wenk, M.: The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005). https://doi.org/10.1038/nrd1776
Wenk, M.R.: Lipidomics: new tools and applications. Cell 143(6), 888–895 (2010)
Jordan, S.D., Könner, A.C., Brüning, J.C.: Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67, 3255–3273 (2010)
Hou, Q., Ufer, G., Bartels, D.: Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39(5), 1029–1048 (2016)
Quinn, P.J., Joo, F., Vigh, L.: The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53(2), 71–103 (1989)
Leray, C.: Lipids. CRC Press (2014). https://doi.org/10.1201/b17656
Schmitt, F., Hussain, G., Dupuis, L., Loeffler, J.P., Henriques, A.: A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front. Cell. Neurosci. 8, 25 (2014)
Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S., Burtin, P.: Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9(11), 883–897 (2010)
Steuer, R., Morgenthal, K., Weckwerth, W., Selbig, J.: A gentle guide to the analysis of metabolomic data. Methods Mol. Biol. 358, 105–126 (2007)
Weckwerth, W.: Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689 (2003)
Weckwerth, W., Loureiro, M.E., Wenzel, K., Fiehn, O.: Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U.S.A. 101, 7809–7814 (2004)
Morgenthal, K., Wienkoop, S., Scholz, M., Selbig, J., Weckwerth, W.: Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1, 109–121 (2005)
Muller-Linow, M., Weckwerth, W., Hutt, M.T.: Consistency analysis of metabolic correlation networks. BMC Syst. Biol. 1, 44 (2007)
Taylor, J.M., Ankerst, D.P., Andridge, R.R.: Validation of biomarker-based risk prediction models. Clin. Cancer Res. 14(19), 5977–5983 (2008)
Sidak, D., Schwarzerová, J., Weckwerth, W., Waldherr, S.: Interpretable machine learning methods for predictions in systems biology from omics data. Front. Mol. Biosci. 9, 926623 (2022). https://doi.org/10.3389/fmolb.2022.926623
Bachmann, G., Sun, X., Jaeger, W., Kautzky-Willer, A., Weckwerth, W.: Combined metabolomic analysis of plasma and urine reveals AHBA, tryptophan and serotonin metabolism as potential risk factors in gestational diabetes mellitus (GDM). Front. Mol. Biosci. 4, 84 (2017)
Schwarzerova, J., Pierides, I., Sedlar, K., Weckwerth, W.: Linear predictive modeling for immune metabolites related to other metabolites. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) Bioinformatics and Biomedical Engineering: 9th International Work-Conference, IWBBIO 2022, Maspalomas, Gran Canaria, Spain, Proceedings, Part I, pp. 16–27. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-07704-3_2
Qi, Y.: Random forest for bioinformatics. In: Ensemble Machine Learning: Methods and Applications, pp. 307–323. Springer, US, Boston, MA (2012)
Andreyev, A.Y., et al.: Subcellular organelle lipidomics in TLR-4-activated macrophages 1 [S]. J. Lipid Res. 51(9), 2785–2797 (2010)
Molenaar, M.R., Jeucken, A., Wassenaar, T.A., van de Lest, C.H., Brouwers, J.F., Helms, J.B.: LION/web: A web-based ontology enrichment tool for lipidomic data analysis. GigaScience 8(6), giz061 (2019). https://doi.org/10.1093/gigascience/giz061
Yetukuri, L., Katajamaa, M., Medina-Gomez, G., Seppänen-Laakso, T., Vidal-Puig, A., Orešič, M.: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol. 1(1), 1–15 (2007)
Yu, J., et al.: Lipidomics and transcriptomics analyses of altered lipid species and pathways in oxaliplatin-treated colorectal cancer cells. J. Pharm. Biomed. Anal. 200, 114077 (2021)
Mahony, S., Auron, P.E., Benos, P.V.: Inferring protein–DNA dependencies using motif alignments and mutual information. Bioinformatics 23(13), i297–i304 (2007)
Kanehisa, M.: The KEGG database. In: ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium, vol. 247, pp. 91–103. John Wiley & Sons, Ltd., Chichester, UK
Harrell, F.E., Jr., Harrell, M.F.E., Jr.: Package ‘hmisc’. CRAN2018, pp. 235–236 (2019)
Meyer, P.E., Meyer, M.P.E.: Package ‘infotheo’. R Packag. version, 1 (2009)
Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)
McKinney, W.: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc. (2012)
McKinney, W.: pandas: a foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Bouwstra, J.A., Dubbelaar, F.E.R., Gooris, G.S., Weerheim, A.M., Ponec, M.: The role of ceramide composition in the lipid organisation of the skin barrier. Biochim. Biophys. Acta: Biomembranes 1419(2), 127–136 (1999). https://doi.org/10.1016/S0005-2736(99)00057-7
Silva, L.C., de Almeida, R.F., Castro, B.M., Fedorov, A., Prieto, M.: Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92(2), 502–516 (2007)
Sankaram, M.B., Thompson, T.E.: Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29(47), 10670–10675 (1990)
Fahy, E., Sud, M., Cotter, D., Subramaniam, S.: LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35(Suppl. 2), W606–W612 (2007). https://doi.org/10.1093/nar/gkm324
Cozma, C., et al.: C26-ceramide as highly sensitive biomarker for the diagnosis of Farber disease. Sci. Rep. 7(1), 1–13 (2017)
Acknowledgements
Computational resources were supplied by the Ministry of Education, Youth and Sports of the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-Scientific Cloud (Project No. LM2015085) provided within the program Projects of Large Research, Development and Innovations Infrastructures.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schwarzerová, J. et al. (2023). Systematic Comparison of Advanced Network Analysis and Visualization of Lipidomics Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-34953-9_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34952-2
Online ISBN: 978-3-031-34953-9
eBook Packages: Computer ScienceComputer Science (R0)