Skip to main content

Systematic Comparison of Advanced Network Analysis and Visualization of Lipidomics Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

Comprehensive analysis of lipids is becoming a forefront of clinical data analysis. Due to significant technical advancements, lipidomics is emerging in clinical diagnostics for improvement and earlier detection of a broad range of diseases. However, in order to understand the biological complexities and interrelationships between the molecules, it is important to have a correct representation of the data and visualizations that enable good interpretability of the lipidomic data. Therefore, the present study systematically compares different visualization methods for lipidomic data, based on different computational relations between the selected lipids and supplemented with known biological information. Networks were reconstructed, and an analysis was performed to objectively compare the visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanksby, S.J., Mitchell, T.W.: Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. 3, 433–465 (2010)

    Article  CAS  Google Scholar 

  2. Sethi, S., Brietzke, E.: Recent advances in lipidomics: analytical and clinical perspectives. Prostagland. Other Lipid Mediat. 128, 8–16 (2017)

    Article  Google Scholar 

  3. Wenk, M.: The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005). https://doi.org/10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  4. Wenk, M.R.: Lipidomics: new tools and applications. Cell 143(6), 888–895 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Jordan, S.D., Könner, A.C., Brüning, J.C.: Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67, 3255–3273 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou, Q., Ufer, G., Bartels, D.: Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39(5), 1029–1048 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Quinn, P.J., Joo, F., Vigh, L.: The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53(2), 71–103 (1989)

    Article  CAS  PubMed  Google Scholar 

  8. Leray, C.: Lipids. CRC Press (2014). https://doi.org/10.1201/b17656

    Book  Google Scholar 

  9. Schmitt, F., Hussain, G., Dupuis, L., Loeffler, J.P., Henriques, A.: A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front. Cell. Neurosci. 8, 25 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S., Burtin, P.: Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9(11), 883–897 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Steuer, R., Morgenthal, K., Weckwerth, W., Selbig, J.: A gentle guide to the analysis of metabolomic data. Methods Mol. Biol. 358, 105–126 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Weckwerth, W.: Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Weckwerth, W., Loureiro, M.E., Wenzel, K., Fiehn, O.: Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U.S.A. 101, 7809–7814 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morgenthal, K., Wienkoop, S., Scholz, M., Selbig, J., Weckwerth, W.: Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1, 109–121 (2005)

    Article  CAS  Google Scholar 

  15. Muller-Linow, M., Weckwerth, W., Hutt, M.T.: Consistency analysis of metabolic correlation networks. BMC Syst. Biol. 1, 44 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor, J.M., Ankerst, D.P., Andridge, R.R.: Validation of biomarker-based risk prediction models. Clin. Cancer Res. 14(19), 5977–5983 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sidak, D., Schwarzerová, J., Weckwerth, W., Waldherr, S.: Interpretable machine learning methods for predictions in systems biology from omics data. Front. Mol. Biosci. 9, 926623 (2022). https://doi.org/10.3389/fmolb.2022.926623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bachmann, G., Sun, X., Jaeger, W., Kautzky-Willer, A., Weckwerth, W.: Combined metabolomic analysis of plasma and urine reveals AHBA, tryptophan and serotonin metabolism as potential risk factors in gestational diabetes mellitus (GDM). Front. Mol. Biosci. 4, 84 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwarzerova, J., Pierides, I., Sedlar, K., Weckwerth, W.: Linear predictive modeling for immune metabolites related to other metabolites. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) Bioinformatics and Biomedical Engineering: 9th International Work-Conference, IWBBIO 2022, Maspalomas, Gran Canaria, Spain, Proceedings, Part I, pp. 16–27. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-07704-3_2

    Chapter  Google Scholar 

  20. Qi, Y.: Random forest for bioinformatics. In: Ensemble Machine Learning: Methods and Applications, pp. 307–323. Springer, US, Boston, MA (2012)

    Chapter  Google Scholar 

  21. Andreyev, A.Y., et al.: Subcellular organelle lipidomics in TLR-4-activated macrophages 1 [S]. J. Lipid Res. 51(9), 2785–2797 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molenaar, M.R., Jeucken, A., Wassenaar, T.A., van de Lest, C.H., Brouwers, J.F., Helms, J.B.: LION/web: A web-based ontology enrichment tool for lipidomic data analysis. GigaScience 8(6), giz061 (2019). https://doi.org/10.1093/gigascience/giz061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yetukuri, L., Katajamaa, M., Medina-Gomez, G., Seppänen-Laakso, T., Vidal-Puig, A., Orešič, M.: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol. 1(1), 1–15 (2007)

    Article  Google Scholar 

  24. Yu, J., et al.: Lipidomics and transcriptomics analyses of altered lipid species and pathways in oxaliplatin-treated colorectal cancer cells. J. Pharm. Biomed. Anal. 200, 114077 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Mahony, S., Auron, P.E., Benos, P.V.: Inferring protein–DNA dependencies using motif alignments and mutual information. Bioinformatics 23(13), i297–i304 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Kanehisa, M.: The KEGG database. In: ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium, vol. 247, pp. 91–103. John Wiley & Sons, Ltd., Chichester, UK

    Google Scholar 

  27. Harrell, F.E., Jr., Harrell, M.F.E., Jr.: Package ‘hmisc’. CRAN2018, pp. 235–236 (2019)

    Google Scholar 

  28. Meyer, P.E., Meyer, M.P.E.: Package ‘infotheo’. R Packag. version, 1 (2009)

    Google Scholar 

  29. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKinney, W.: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc. (2012)

    Google Scholar 

  31. McKinney, W.: pandas: a foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)

    Google Scholar 

  32. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  33. Bouwstra, J.A., Dubbelaar, F.E.R., Gooris, G.S., Weerheim, A.M., Ponec, M.: The role of ceramide composition in the lipid organisation of the skin barrier. Biochim. Biophys. Acta: Biomembranes 1419(2), 127–136 (1999). https://doi.org/10.1016/S0005-2736(99)00057-7

    Article  CAS  Google Scholar 

  34. Silva, L.C., de Almeida, R.F., Castro, B.M., Fedorov, A., Prieto, M.: Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92(2), 502–516 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Sankaram, M.B., Thompson, T.E.: Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29(47), 10670–10675 (1990)

    Article  CAS  PubMed  Google Scholar 

  36. Fahy, E., Sud, M., Cotter, D., Subramaniam, S.: LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35(Suppl. 2), W606–W612 (2007). https://doi.org/10.1093/nar/gkm324

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cozma, C., et al.: C26-ceramide as highly sensitive biomarker for the diagnosis of Farber disease. Sci. Rep. 7(1), 1–13 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational resources were supplied by the Ministry of Education, Youth and Sports of the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-Scientific Cloud (Project No. LM2015085) provided within the program Projects of Large Research, Development and Innovations Infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jana Schwarzerová or Dominika Olešová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarzerová, J. et al. (2023). Systematic Comparison of Advanced Network Analysis and Visualization of Lipidomics Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics