Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the adult kidney, with the papillary subtype (pRCC) as the second most frequent. There is a need to improve evaluative criteria for pRCC due to overlapping diagnostic characteristics in RCC subtypes. To create a better prognostic model for pRCC, we proposed an integration of morphologic and genomic features. Matched images and genomic data from The Cancer Genome Atlas were used. Image features were extracted using CellProfiler, and prognostic image features were selected using least absolute shrinkage and selection operator and support vector machine algorithms. Eigengene modules were identified using weighted gene co-expression network analysis. Risk groups based on prognostic features were significantly distinct (p < 0.05) according to Kaplan-Meier analysis and log-rank test results. We used two image features and nine eigengene modules to construct a model with the Random Survival Forest method, measuring 11-, 16-, and 20-month areas under the curve (AUC) of a time-dependent receiver operating curve. The integrative model (AUCs: 0.877, 0.769, and 0.811) outperformed models trained with eigengenes alone (AUCs: 0.75, 0.733, and 0.785) and morphological features alone (AUCs: 0.593, 0.523, 0.603). This suggests that an integrative prognostic model based on histopathological images and genomic features could significantly improve survival prediction for pRCC patients and assist in clinical decision-making.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA. Cancer J. Clin. 70(1), 7–30 (2020). https://doi.org/10.3322/caac.21590
Cheng, J., et al.: Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis. Cancer Res. 77(21), e91–e100 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0313
Filippou, P., Shuch, B., Psutka, S.P.: Advances in the characterization of clear cell papillary renal cell carcinoma: identifying the sheep in wolf’s clothing. Eur. Urol. 79(4), 478–479 (2021). https://doi.org/10.1016/j.eururo.2021.01.023
Morlote, D.M., Harada, S., Batista, D., Gordetsky, J., Rais-Bahrami, S.: Clear cell papillary renal cell carcinoma: molecular profile and virtual karyotype. Hum. Pathol. 91, 52–60 (2019). https://doi.org/10.1016/j.humpath.2019.05.011
Rysz, J., Franczyk, B., Ławiński, J., Gluba-Brzózka, A.: Characteristics of clear cell papillary Renal Cell Carcinoma (ccpRCC). Int. J. Mol. Sci. 23(1), 151 (2021). https://doi.org/10.3390/ijms23010151
Shuch, B., et al.: Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol. 67(1), 85–97 (2015). https://doi.org/10.1016/j.eururo.2014.04.029
Kovacs, G., et al.: The heidelberg classification of renal cell tumours. J. Pathol. 183(2), 131–133 (1997). https://doi.org/10.1002/(SICI)1096-9896(199710)183:2%3c131::AID-PATH931%3e3.0.CO;2-G
Akhtar, M., Al-Bozom, I.A., Al Hussain, T.: Papillary Renal Cell Carcinoma (PRCC): an update. Adv. Anat. Pathol. 26(2), 124–132 (2019). https://doi.org/10.1097/PAP.0000000000000220
Mendhiratta, N., Muraki, P., Sisk, A.E., Shuch, B.: Papillary renal cell carcinoma: review. Urol. Oncol. Semin. Orig. Investig. 39(6), 327–337 (2021). https://doi.org/10.1016/j.urolonc.2021.04.013
Clark, I., Torbenson, M.S.: Immunohistochemistry and special stains in medical liver pathology. Adv. Anat. Pathol. 24(2), 99–109 (2017). https://doi.org/10.1097/PAP.0000000000000139
Cooper, L.A., et al.: Digital pathology: data-intensive frontier in medical imaging. Proc. IEEE Inst. Electr. Electron. Eng. 100(4), 991–1003 (2012). https://doi.org/10.1109/JPROC.2011.2182074
Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011). https://doi.org/10.1126/scitranslmed.3002564
Gultekin, T., Koyuncu, C.F., Sokmensuer, C., Gunduz-Demir, C.: Two-tier tissue decomposition for histopathological image representation and classification. IEEE Trans. Med. Imaging 34(1), 275–283 (2015). https://doi.org/10.1109/TMI.2014.2354373
Yu, K.-H., et al.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016). https://doi.org/10.1038/ncomms12474
Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
Al-Lahham, H.Z., Alomari, R.S., Hiary, H., Chaudhary, V.: Automating proliferation rate estimation from Ki-67 histology images. In: Medical Imaging, 2012 Computer-Aided Diagnosis SPIE, pp. 669–675 (2012).https://doi.org/10.1117/12.911009
Mulrane, L., Rexhepaj, E., Penney, S., Callanan, J.J., Gallagher, W.M.: Automated image analysis in histopathology: a valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 8(6), 707–725 (2008). https://doi.org/10.1586/14737159.8.6.707
Bartlett, J.M., et al.: Evaluating HER2 amplification and overexpression in breast cancer. J. Pathol. 195(4), 422–428 (2001). https://doi.org/10.1002/path.971
Gulati, S., et al.: Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur. Urol. 66(5), 936–948 (2014). https://doi.org/10.1016/j.eururo.2014.06.053
Maroto, P., Rini, B.: Molecular biomarkers in advanced renal cell carcinoma. Clin. Cancer Res. 20(8), 2060–2071 (2014). https://doi.org/10.1158/1078-0432.CCR-13-1351
Haury, A.-C., Gestraud, P., Vert, J.-P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE 6(12), e28210 (2011). https://doi.org/10.1371/journal.pone.0028210
Bastien, R.R., et al.: PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med. Genomics 5, 44 (2012). https://doi.org/10.1186/1755-8794-5-44
He, S., et al.: Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell. Mol. Life Sci. CMLS 67(12), 2069–2076 (2010). https://doi.org/10.1007/s00018-010-0340-8
Yuan, Y., et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012). https://doi.org/10.1126/scitranslmed.3004330
Calabrò, A., et al.: Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res. Treat. 116(1), 69–77 (2009). https://doi.org/10.1007/s10549-008-0105-3
Assié, G., LaFramboise, T., Platzer, P., Bertherat, J., Stratakis, C.A., Eng, C.: SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am. J. Hum. Genet. 82(4), 903–915 (2008). https://doi.org/10.1016/j.ajhg.2008.01.012
Neuvial, P., Bengtsson, H., Speed, T.P.: Statistical analysis of single nucleotide polymorphism microarrays in cancer studies. In: Lu, H.H.-S., Schölkopf, B., Zhao, H. (eds.) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics, pp. 225–255. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16345-6_11
Oh, E.-Y., et al.: Extensive rewiring of epithelial-stromal co-expression networks in breast cancer. Genome Biol. 16, 128 (2015). https://doi.org/10.1186/s13059-015-0675-4
Langfelder, P., Horvath, S.: Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007). https://doi.org/10.1186/1752-0509-1-54
Zhang, G., Xu, S., Yuan, Z., Shen, L.: <p>Weighted gene coexpression network analysis identifies specific modules and hub genes related to major depression</p>. Neuropsychiatr. Dis. Treat. 16, 703–713 (2020). https://doi.org/10.2147/NDT.S244452
Colen, R., et al.: NCI workshop report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol. 7(5), 556–569 (2014). https://doi.org/10.1016/j.tranon.2014.07.007
Martins, F.C., et al.: Combined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier. Genome Biol. 15(12), 526 (2014). https://doi.org/10.1186/s13059-014-0526-8
Mogensen, U.B., Ishwaran, H., Gerds, T.A.: Evaluating random forests for survival analysis using prediction error curves. J. Stat. Softw. 50(11), 1–23 (2012). https://doi.org/10.18637/jss.v050.i11
Pickett, K.L., Suresh, K., Campbell, K.R., Davis, S., Juarez-Colunga, E.: Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med. Res. Methodol. 21, 216 (2021). https://doi.org/10.1186/s12874-021-01375-x
Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. Poznan Pol. 19(1A), A68-77 (2015). https://doi.org/10.5114/wo.2014.47136
Gutman, D.A., et al.: Cancer digital slide archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J. Am. Med. Inform. Assoc. JAMIA 20(6), 1091–1098 (2013). https://doi.org/10.1136/amiajnl-2012-001469
Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 1107–1110. IEEE (2009). https://doi.org/10.1109/ISBI.2009.5193250
Li, H., Chen, L., Zeng, H., Liao, Q., Ji, J., Ma, X.: Integrative analysis of histopathological images and genomic data in colon adenocarcinoma. Front Oncol 11 (2021). Accessed: Aug. 09, 2022. https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2021.636451
Soliman, K.: CellProfiler: novel automated image segmentation procedure for super-resolution microscopy. Biol. Proced. Online 17(1), 11 (2015). https://doi.org/10.1186/s12575-015-0023-9
Duan, K.-B., Rajapakse, J.C., Wang, H., Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4(3), 228–234 (2005). https://doi.org/10.1109/tnb.2005.853657
Huang, Z., et al.: Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. BMC Med. Genomics 13(Suppl 5), 41 (2020). https://doi.org/10.1186/s12920-020-0686-1
Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559
Song, M.-Y., Lee, D.-Y., Chun, K.-S., Kim, E.-H.: The role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int. J. Mol. Sci. 22(9), 4376 (2021). https://doi.org/10.3390/ijms22094376
Rathmell, W.K., Rathmell, J.C., Linehan, W.M.: Metabolic pathways in kidney cancer: current therapies and future directions. J. Clin. Oncol. 36(36), 3540–3546 (2018). https://doi.org/10.1200/JCO.2018.79.2309
Mano, E.C.C., Scott, A.L., Honorio, K.M.: UDP-glucuronosyltransferases: structure, function and drug design studies. Curr. Med. Chem. 25(27), 3247–3255 (2018). https://doi.org/10.2174/0929867325666180226111311
Allain, E.P., Rouleau, M., Lévesque, E., Guillemette, C.: Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 122(9), 1277–1287 (2020). https://doi.org/10.1038/s41416-019-0722-0
Gallazzini, M., Pallet, N.: Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110(9), 205–216 (2018). https://doi.org/10.1111/boc.201800019
Cybulsky, A.V.: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13(11), 681–696 (2017). https://doi.org/10.1038/nrneph.2017.129
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kee, S.L. et al. (2023). Predicting Papillary Renal Cell Carcinoma Prognosis Using Integrative Analysis of Histopathological Images and Genomic Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-34960-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34959-1
Online ISBN: 978-3-031-34960-7
eBook Packages: Computer ScienceComputer Science (R0)