Skip to main content

Predicting Papillary Renal Cell Carcinoma Prognosis Using Integrative Analysis of Histopathological Images and Genomic Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

Renal cell carcinoma (RCC) is a common malignant tumor of the adult kidney, with the papillary subtype (pRCC) as the second most frequent. There is a need to improve evaluative criteria for pRCC due to overlapping diagnostic characteristics in RCC subtypes. To create a better prognostic model for pRCC, we proposed an integration of morphologic and genomic features. Matched images and genomic data from The Cancer Genome Atlas were used. Image features were extracted using CellProfiler, and prognostic image features were selected using least absolute shrinkage and selection operator and support vector machine algorithms. Eigengene modules were identified using weighted gene co-expression network analysis. Risk groups based on prognostic features were significantly distinct (p < 0.05) according to Kaplan-Meier analysis and log-rank test results. We used two image features and nine eigengene modules to construct a model with the Random Survival Forest method, measuring 11-, 16-, and 20-month areas under the curve (AUC) of a time-dependent receiver operating curve. The integrative model (AUCs: 0.877, 0.769, and 0.811) outperformed models trained with eigengenes alone (AUCs: 0.75, 0.733, and 0.785) and morphological features alone (AUCs: 0.593, 0.523, 0.603). This suggests that an integrative prognostic model based on histopathological images and genomic features could significantly improve survival prediction for pRCC patients and assist in clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA. Cancer J. Clin. 70(1), 7–30 (2020). https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Cheng, J., et al.: Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis. Cancer Res. 77(21), e91–e100 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Filippou, P., Shuch, B., Psutka, S.P.: Advances in the characterization of clear cell papillary renal cell carcinoma: identifying the sheep in wolf’s clothing. Eur. Urol. 79(4), 478–479 (2021). https://doi.org/10.1016/j.eururo.2021.01.023

    Article  PubMed  Google Scholar 

  4. Morlote, D.M., Harada, S., Batista, D., Gordetsky, J., Rais-Bahrami, S.: Clear cell papillary renal cell carcinoma: molecular profile and virtual karyotype. Hum. Pathol. 91, 52–60 (2019). https://doi.org/10.1016/j.humpath.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  5. Rysz, J., Franczyk, B., Ławiński, J., Gluba-Brzózka, A.: Characteristics of clear cell papillary Renal Cell Carcinoma (ccpRCC). Int. J. Mol. Sci. 23(1), 151 (2021). https://doi.org/10.3390/ijms23010151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shuch, B., et al.: Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol. 67(1), 85–97 (2015). https://doi.org/10.1016/j.eururo.2014.04.029

    Article  PubMed  Google Scholar 

  7. Kovacs, G., et al.: The heidelberg classification of renal cell tumours. J. Pathol. 183(2), 131–133 (1997). https://doi.org/10.1002/(SICI)1096-9896(199710)183:2%3c131::AID-PATH931%3e3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  8. Akhtar, M., Al-Bozom, I.A., Al Hussain, T.: Papillary Renal Cell Carcinoma (PRCC): an update. Adv. Anat. Pathol. 26(2), 124–132 (2019). https://doi.org/10.1097/PAP.0000000000000220

    Article  PubMed  Google Scholar 

  9. Mendhiratta, N., Muraki, P., Sisk, A.E., Shuch, B.: Papillary renal cell carcinoma: review. Urol. Oncol. Semin. Orig. Investig. 39(6), 327–337 (2021). https://doi.org/10.1016/j.urolonc.2021.04.013

    Article  Google Scholar 

  10. Clark, I., Torbenson, M.S.: Immunohistochemistry and special stains in medical liver pathology. Adv. Anat. Pathol. 24(2), 99–109 (2017). https://doi.org/10.1097/PAP.0000000000000139

    Article  CAS  PubMed  Google Scholar 

  11. Cooper, L.A., et al.: Digital pathology: data-intensive frontier in medical imaging. Proc. IEEE Inst. Electr. Electron. Eng. 100(4), 991–1003 (2012). https://doi.org/10.1109/JPROC.2011.2182074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011). https://doi.org/10.1126/scitranslmed.3002564

    Article  PubMed  Google Scholar 

  13. Gultekin, T., Koyuncu, C.F., Sokmensuer, C., Gunduz-Demir, C.: Two-tier tissue decomposition for histopathological image representation and classification. IEEE Trans. Med. Imaging 34(1), 275–283 (2015). https://doi.org/10.1109/TMI.2014.2354373

    Article  PubMed  Google Scholar 

  14. Yu, K.-H., et al.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016). https://doi.org/10.1038/ncomms12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  16. Al-Lahham, H.Z., Alomari, R.S., Hiary, H., Chaudhary, V.: Automating proliferation rate estimation from Ki-67 histology images. In: Medical Imaging, 2012 Computer-Aided Diagnosis SPIE, pp. 669–675 (2012).https://doi.org/10.1117/12.911009

  17. Mulrane, L., Rexhepaj, E., Penney, S., Callanan, J.J., Gallagher, W.M.: Automated image analysis in histopathology: a valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 8(6), 707–725 (2008). https://doi.org/10.1586/14737159.8.6.707

    Article  PubMed  Google Scholar 

  18. Bartlett, J.M., et al.: Evaluating HER2 amplification and overexpression in breast cancer. J. Pathol. 195(4), 422–428 (2001). https://doi.org/10.1002/path.971

    Article  CAS  PubMed  Google Scholar 

  19. Gulati, S., et al.: Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur. Urol. 66(5), 936–948 (2014). https://doi.org/10.1016/j.eururo.2014.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maroto, P., Rini, B.: Molecular biomarkers in advanced renal cell carcinoma. Clin. Cancer Res. 20(8), 2060–2071 (2014). https://doi.org/10.1158/1078-0432.CCR-13-1351

    Article  CAS  PubMed  Google Scholar 

  21. Haury, A.-C., Gestraud, P., Vert, J.-P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE 6(12), e28210 (2011). https://doi.org/10.1371/journal.pone.0028210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bastien, R.R., et al.: PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med. Genomics 5, 44 (2012). https://doi.org/10.1186/1755-8794-5-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, S., et al.: Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell. Mol. Life Sci. CMLS 67(12), 2069–2076 (2010). https://doi.org/10.1007/s00018-010-0340-8

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, Y., et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012). https://doi.org/10.1126/scitranslmed.3004330

    Article  PubMed  Google Scholar 

  25. Calabrò, A., et al.: Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res. Treat. 116(1), 69–77 (2009). https://doi.org/10.1007/s10549-008-0105-3

    Article  CAS  PubMed  Google Scholar 

  26. Assié, G., LaFramboise, T., Platzer, P., Bertherat, J., Stratakis, C.A., Eng, C.: SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am. J. Hum. Genet. 82(4), 903–915 (2008). https://doi.org/10.1016/j.ajhg.2008.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neuvial, P., Bengtsson, H., Speed, T.P.: Statistical analysis of single nucleotide polymorphism microarrays in cancer studies. In: Lu, H.H.-S., Schölkopf, B., Zhao, H. (eds.) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics, pp. 225–255. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16345-6_11

  28. Oh, E.-Y., et al.: Extensive rewiring of epithelial-stromal co-expression networks in breast cancer. Genome Biol. 16, 128 (2015). https://doi.org/10.1186/s13059-015-0675-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langfelder, P., Horvath, S.: Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007). https://doi.org/10.1186/1752-0509-1-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, G., Xu, S., Yuan, Z., Shen, L.: <p>Weighted gene coexpression network analysis identifies specific modules and hub genes related to major depression</p>. Neuropsychiatr. Dis. Treat. 16, 703–713 (2020). https://doi.org/10.2147/NDT.S244452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colen, R., et al.: NCI workshop report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol. 7(5), 556–569 (2014). https://doi.org/10.1016/j.tranon.2014.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martins, F.C., et al.: Combined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier. Genome Biol. 15(12), 526 (2014). https://doi.org/10.1186/s13059-014-0526-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mogensen, U.B., Ishwaran, H., Gerds, T.A.: Evaluating random forests for survival analysis using prediction error curves. J. Stat. Softw. 50(11), 1–23 (2012). https://doi.org/10.18637/jss.v050.i11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pickett, K.L., Suresh, K., Campbell, K.R., Davis, S., Juarez-Colunga, E.: Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med. Res. Methodol. 21, 216 (2021). https://doi.org/10.1186/s12874-021-01375-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. Poznan Pol. 19(1A), A68-77 (2015). https://doi.org/10.5114/wo.2014.47136

    Article  Google Scholar 

  36. Gutman, D.A., et al.: Cancer digital slide archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J. Am. Med. Inform. Assoc. JAMIA 20(6), 1091–1098 (2013). https://doi.org/10.1136/amiajnl-2012-001469

    Article  PubMed  Google Scholar 

  37. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 1107–1110. IEEE (2009). https://doi.org/10.1109/ISBI.2009.5193250

  38. Li, H., Chen, L., Zeng, H., Liao, Q., Ji, J., Ma, X.: Integrative analysis of histopathological images and genomic data in colon adenocarcinoma. Front Oncol 11 (2021). Accessed: Aug. 09, 2022. https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2021.636451

  39. Soliman, K.: CellProfiler: novel automated image segmentation procedure for super-resolution microscopy. Biol. Proced. Online 17(1), 11 (2015). https://doi.org/10.1186/s12575-015-0023-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan, K.-B., Rajapakse, J.C., Wang, H., Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4(3), 228–234 (2005). https://doi.org/10.1109/tnb.2005.853657

    Article  PubMed  Google Scholar 

  41. Huang, Z., et al.: Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. BMC Med. Genomics 13(Suppl 5), 41 (2020). https://doi.org/10.1186/s12920-020-0686-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, M.-Y., Lee, D.-Y., Chun, K.-S., Kim, E.-H.: The role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int. J. Mol. Sci. 22(9), 4376 (2021). https://doi.org/10.3390/ijms22094376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rathmell, W.K., Rathmell, J.C., Linehan, W.M.: Metabolic pathways in kidney cancer: current therapies and future directions. J. Clin. Oncol. 36(36), 3540–3546 (2018). https://doi.org/10.1200/JCO.2018.79.2309

    Article  CAS  Google Scholar 

  45. Mano, E.C.C., Scott, A.L., Honorio, K.M.: UDP-glucuronosyltransferases: structure, function and drug design studies. Curr. Med. Chem. 25(27), 3247–3255 (2018). https://doi.org/10.2174/0929867325666180226111311

    Article  CAS  PubMed  Google Scholar 

  46. Allain, E.P., Rouleau, M., Lévesque, E., Guillemette, C.: Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 122(9), 1277–1287 (2020). https://doi.org/10.1038/s41416-019-0722-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gallazzini, M., Pallet, N.: Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110(9), 205–216 (2018). https://doi.org/10.1111/boc.201800019

    Article  PubMed  Google Scholar 

  48. Cybulsky, A.V.: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13(11), 681–696 (2017). https://doi.org/10.1038/nrneph.2017.129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myles Joshua T. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kee, S.L. et al. (2023). Predicting Papillary Renal Cell Carcinoma Prognosis Using Integrative Analysis of Histopathological Images and Genomic Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34960-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34959-1

  • Online ISBN: 978-3-031-34960-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics