Skip to main content

Breast Cancer Histologic Grade Identification by Graph Neural Network Embeddings

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

Deep neural networks are nowadays state-of-the-art methodologies for general-purpose image classification. As a consequence, such approaches are also employed in the context of histopathology biopsy image classification. This specific task is usually performed by separating the image into patches, giving them as input to the Deep Model and evaluating the single sub-part outputs. This approach has the main drawback of not considering the global structure of the input image and can lead to avoiding the discovery of relevant patterns among non-overlapping patches. Differently from this commonly adopted assumption, in this paper, we propose to face the problem by representing the input into a proper embedding resulting from a graph representation built from the tissue regions of the image. This graph representation is capable of maintaining the image structure and considering the relations among its relevant parts. The effectiveness of this representation is shown in the case of automatic tumor grading identification of breast cancer, using public available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016)

    Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  PubMed  Google Scholar 

  3. Arnold, M., et al.: Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66, 15–23 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Calderaro, S., Lo Bosco, G., Rizzo, R., Vella, F.: Fuzzy clustering of histopathological images using deep learning embeddings. In: CEUR Workshop Proceedings, vol. 3074 (2021)

    Google Scholar 

  5. Calderaro, S., Lo Bosco, G., Rizzo, R., Vella, F.: Deep metric learning for histopathological image classification. In: 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM), pp. 57–64 (2022)

    Google Scholar 

  6. Calderaro, S., Lo Bosco, G., Rizzo, R., Vella, F.: Deep metric learning for transparent classification of COVID-19 X-Ray images. In: 2022 16TH International Conference On Signal Image Technology & Internet Based Systems (SITIS) (2022)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Dimitropoulos, K., Barmpoutis, P., Zioga, C., Kamas, A., Patsiaoura, K., Grammalidis, N.: Grading of invasive breast carcinoma through Grassmannian VLAD encoding. PLoS ONE 12(9), e0185110 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016)

    Google Scholar 

  12. Jaroensri, R., et al.: Deep learning models for histologic grading of breast cancer and association with disease prognosis. NPJ Breast Cancer 8(1), 1–12 (2022)

    Article  Google Scholar 

  13. Jaume, G., Pati, P., Anklin, V., Foncubierta, A., Gabrani, M.: HistoCartography: a toolkit for graph analytics in digital pathology. In: MICCAI Workshop on Computational Pathology, pp. 117–128 (2021)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016)

    Google Scholar 

  16. Li, L., et al.: Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images. Multimed. Tools Appl. 79(21), 14509–14528 (2020)

    Article  Google Scholar 

  17. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. CoRR abs/1802.03426 (2018)

    Google Scholar 

  18. Nanni, L., Maguolo, G., Lumini, A.: Exploiting Adam-like optimization algorithms to improve the performance of convolutional neural networks. CoRR abs/2103.14689 (2021)

    Google Scholar 

  19. Paszke, A., Gross, et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  20. Pati, P., et al.: Hierarchical graph representations in digital pathology. Med. Image Anal. 75, 102264 (2022)

    Article  PubMed  Google Scholar 

  21. Potjer, F.K.: Region adjacency graphs and connected morphological operators. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 111–118. Computational Imaging and Vision (1996)

    Google Scholar 

  22. Senousy, Z., Abdelsamea, M.M., Mohamed, M.M., Gaber, M.M.: 3E-Net: entropy-based elastic ensemble of deep convolutional neural networks for grading of invasive breast carcinoma histopathological microscopic images. Entropy 23(5), 620 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

  25. Wang, Y., et al.: Improved breast cancer histological grading using deep learning. Ann. Oncol. 33(1), 89–98 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? CoRR abs/1810.00826 (2018)

    Google Scholar 

  27. Yan, R., et al.: Nuclei-guided network for breast cancer grading in he-stained pathological images. Sensors 22(11), 4061 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, R., Yang, Z., Li, J., Zheng, C., Zhang, F.: Divide-and-attention network for he-stained pathological image classification. Biology 11(7), 982 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Calderaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calderaro, S., Bosco, G.L., Vella, F., Rizzo, R. (2023). Breast Cancer Histologic Grade Identification by Graph Neural Network Embeddings. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34960-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34959-1

  • Online ISBN: 978-3-031-34960-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics