Skip to main content

Role of Parallel Processing in Brain Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13920))

  • 529 Accesses

Abstract

Parallel processing is a procedure for making computation of more than a processor to overcome the difficulty of separate parts of an overall task. It is really crucial for some medicine-related tasks since the method provide time-efficient computation by a program, thus several calculations could be made simultaneously. Whereas, magnetic resonance imaging (MRI) is one of the medical imaging methods to show form of an anatomy and biological progressions of a human body. Parallel processing methods could be useful for being implemented in MRI with the aim of getting real-time, interventional and time-efficient acquisition of images. Given the need of faster computation on brain MRI to get early and real-time feedbacks in medicine, this paper presents a systematic review of the literature related to brain MRIs focusing on the emerging applications of parallel processing methods for the analysis of brain MRIs. We investigate the articles consisting of these kernels with literature matrices including their, materials, methods, journal types between 2013 and 2023. We distill the most prominent key concepts of parallel processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pizarro, R., et al.: Using deep learning algorithms to automatically identify the brain MRI contrast: implications for managing large databases. Neuroinformatics 17(1), 115–130 (2018). https://doi.org/10.1007/s12021-018-9387-8

    Article  Google Scholar 

  2. Xu, Z., Wang, S., Li, Y., Zhu, F., Huang, J.: PRIM: an efficient preconditioning iterative reweighted least squares method for parallel brain MRI reconstruction. Neuroinformatics 16(3–4), 425–430 (2018). https://doi.org/10.1007/s12021-017-9354-9

    Article  PubMed  Google Scholar 

  3. Liu, Y., Unsal, H.S., Tao, Y., Zhang, N.: Automatic brain extraction for rodent MRI images. Neuroinformatics 18(3), 395–406 (2020). https://doi.org/10.1007/s12021-020-09453-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kontos, D., Megalooikonomou, V., Gee, J.C.: Morphometric analysis of brain images with reduced number of statistical tests: a study on the gender-related differentiation of the corpus callosum. Artif. Intell. Med. 47, 75–86 (2009). https://doi.org/10.1016/j.artmed.2009.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun, L., Zu, C., Shao, W., Guang, J., Zhang, D., Liu, M.: Reliability-based robust multi-atlas label fusion for brain MRI segmentation. Artif. Intell. Med. 96, 12–24 (2019). https://doi.org/10.1016/j.artmed.2019.03.004

    Article  PubMed  Google Scholar 

  6. Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artif. Intell. Med. 30, 153–176 (2004). https://doi.org/10.1016/j.artmed.2003.11.006

    Article  PubMed  Google Scholar 

  7. González-Villà, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., Lladó, X.: A review on brain structures segmentation in magnetic resonance imaging. Artif. Intell. Med. 73, 45–69 (2016). https://doi.org/10.1016/j.artmed.2016.09.001

    Article  PubMed  Google Scholar 

  8. Youssfi, M., Bouattane, O., Bensalah, M.O., Cherradi, B.: A fast massively parallel fuzzy C-means algorithm for brain MRI segmentation 22, 19 (2015)

    Google Scholar 

  9. Murugavalli, S., Rajamani, V.: A high speed parallel fuzzy c-mean algorithm for brain tumor segmentation. BIME J. 06, 29–34 (2006)

    Google Scholar 

  10. Kalaiselvi, T., Sriramakrishnan, P., Somasundaram, K.: Survey of using GPU CUDA programming model in medical image analysis. Inform. Med. Unlock. 9, 133–144 (2017). https://doi.org/10.1016/j.imu.2017.08.001

    Article  Google Scholar 

  11. Cuda, C.: Programming Guide (2017)

    Google Scholar 

  12. Kirimtat, A., Krejcar, O., Dolezal, R., Selamat, A.: A mini review on parallel processing of brain magnetic resonance imaging. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 482–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_43

    Chapter  Google Scholar 

  13. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the GPU – past, present and future. Med. Image Anal. 17, 1073–1094 (2013). https://doi.org/10.1016/j.media.2013.05.008

    Article  PubMed  Google Scholar 

  14. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs. Front. Neuroinform. 8 (2014). https://doi.org/10.3389/fninf.2014.00024

  15. Lamas-Rodríguez, J., Heras, D.B., Argüello, F., Kainmueller, D., Zachow, S., Bóo, M.: GPU-accelerated level-set segmentation. J. Real-Time Image Proc. 12(1), 15–29 (2013). https://doi.org/10.1007/s11554-013-0378-6

    Article  Google Scholar 

  16. Wawrzonowski, M., Szajerman, D., Daszuta, M., Napieralski, P.: Mobile devices’ GPUs in cloth dynamics simulation. In: Presented at the 2017 Federated Conference on Computer Science and Information Systems September 24 (2017). https://doi.org/10.15439/2017F191

  17. Sumanaweera, T., Liu, D.: Medical image reconstruction with the FFT 5 (2005)

    Google Scholar 

  18. Nguyen, T.-A., Nakib, A., Nguyen, H.-N.: Medical image denoising via optimal implementation of non-local means on hybrid parallel architecture. Comput. Methods Programs Biomed. 129, 29–39 (2016). https://doi.org/10.1016/j.cmpb.2016.02.002

    Article  PubMed  Google Scholar 

  19. Ramani, S., Fessler, J.A.: Parallel MR image reconstruction using augmented lagrangian methods. IEEE Trans. Med. Imaging. 30, 694–706 (2011). https://doi.org/10.1109/TMI.2010.2093536

    Article  PubMed  Google Scholar 

  20. El-Moursy, A.A., ElAzhary, H., Younis, A.: High-accuracy hierarchical parallel technique for hidden Markov model-based 3D magnetic resonance image brain segmentation: high-accuracy hierarchical parallel HMM for 3D MRI brain segmentation. Concurr. Comput. Pract. Expert. 26, 194–216 (2014). https://doi.org/10.1002/cpe.2959

    Article  Google Scholar 

  21. Sulaiman, H., Said, N.M., Ibrahim, A., Alias, N.: High performance visualization of human tumor detection using WTMM on parallel computing system. In: 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, pp. 205–208. IEEE, Kuala Lumpur (2013). https://doi.org/10.1109/CSPA.2013.6530042

  22. Bernal, J., et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81 (2019). https://doi.org/10.1016/j.artmed.2018.08.008

    Article  PubMed  Google Scholar 

  23. Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44, 6209–6224 (2017). https://doi.org/10.1002/mp.12600

    Article  PubMed  Google Scholar 

  24. Ahveninen, J., et al.: Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nat. Commun. 4, 2585 (2013). https://doi.org/10.1038/ncomms3585

    Article  CAS  PubMed  Google Scholar 

  25. Gilat, M., et al.: Dysfunctional limbic circuitry underlying freezing of gait in Parkinson’s disease. Neuroscience 374, 119–132 (2018). https://doi.org/10.1016/j.neuroscience.2018.01.044

    Article  CAS  PubMed  Google Scholar 

  26. Gathmann, B., et al.: Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk. Exp. Brain Res. 232(3), 957–973 (2014). https://doi.org/10.1007/s00221-013-3808-6

    Article  PubMed  Google Scholar 

  27. Cummine, J., et al.: Manipulating instructions strategically affects reliance on the ventral-lexical reading stream: converging evidence from neuroimaging and reaction time. Brain Lang. 125, 203–214 (2013). https://doi.org/10.1016/j.bandl.2012.04.009

    Article  PubMed  Google Scholar 

  28. Khondoker, M., Dobson, R., Skirrow, C., Simmons, A., Stahl, D.: A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies. Stat. Methods Med. Res. 25, 1804–1823 (2016). https://doi.org/10.1177/0962280213502437

    Article  PubMed  Google Scholar 

  29. Chung, Y., et al.: Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci. 15, 43 (2014). https://doi.org/10.1186/1471-2202-15-43

    Article  PubMed  PubMed Central  Google Scholar 

  30. De, A., Zhang, Y., Guo, C.: A parallel adaptive segmentation method based on SOM and GPU with application to MRI image processing. Neurocomputing 198, 180–189 (2016). https://doi.org/10.1016/j.neucom.2015.10.129

    Article  Google Scholar 

  31. Mano, M., Lécuyer, A., Bannier, E., Perronnet, L., Noorzadeh, S., Barillot, C.: How to build a hybrid neurofeedback platform combining EEG and fMRI. Front. Neurosci. 11 (2017). https://doi.org/10.3389/fnins.2017.00140

  32. Minati, L.: Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l1-norm as approximation of Pearson’s temporal correlation: proof-of-concept and example vector hardware implementation. Med. Eng. 6 (2014)

    Google Scholar 

  33. Minati, L., Nigri, A., Cercignani, M., Chan, D.: Detection of scale-freeness in brain connectivity by functional MRI: signal processing aspects and implementation of an open hardware co-processor. Med. Eng. Phys. 35, 1525–1531 (2013). https://doi.org/10.1016/j.medengphy.2013.04.013

    Article  PubMed  Google Scholar 

  34. Wang, W.-J., Hsieh, I.-F., Chen, C.-C.: Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU. PLoS ONE 8, e66599 (2013). https://doi.org/10.1371/journal.pone.0066599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saran, A.N., Nar, F., Saran, M.: Vessel segmentation in MRI using a variational image subtraction approach. 18 (2014)

    Google Scholar 

  36. Meunier, D., et al.: NeuroPycon: an open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Neuroimage 219, 117020 (2020). https://doi.org/10.1016/j.neuroimage.2020.117020

    Article  PubMed  Google Scholar 

  37. Cui, Z., Zhao, C., Gong, G.: Parallel workflow tools to facilitate human brain MRI post-processing. Front. Neurosci. 9 (2015). https://doi.org/10.3389/fnins.2015.00171

  38. Ţugui, A.: GLM analysis for fMRI using Connex array. Int. J. Comput. Commun. 9, 768 (2014). https://doi.org/10.15837/ijccc.2014.6.1482

  39. Thiruvenkadam, K., Nagarajan, K., Padmanaban, S.: An automatic self‐initialized clustering method for brain tissue segmentation and pathology detection from magnetic resonance human head scans with graphics processing unit machine. Concurr. Comput. Pract. Expert. 33 (2021). https://doi.org/10.1002/cpe.6084

  40. Pantoja, M., Weyrich, M., Fernández-Escribano, G.: Acceleration of MRI analysis using multicore and manycore paradigms. J. Supercomput. 76(11), 8679–8690 (2020). https://doi.org/10.1007/s11227-020-03154-9

    Article  Google Scholar 

  41. ElAzhary, H., Younis, A.: Cooperative parallel processing with error curve sensing: a novel technique for enhanced hidden Markov model training for 3D medical image segmentation. J. Med. Imaging Health Inform. 6, 1605–1611 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The work and the contribution were also supported by the SPEV project, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (ID: 2102–2023), “Smart Solutions in Ubiquitous Computing Environments”. We are also grateful for the support of student Michal Dobrovolny in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirimtat, A., Krejcar, O. (2023). Role of Parallel Processing in Brain Magnetic Resonance Imaging. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34960-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34959-1

  • Online ISBN: 978-3-031-34960-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics